Katie A Read

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4332243/publications.pdf

Version: 2024-02-01

304743 434195 2,113 31 22 31 citations h-index g-index papers 35 35 35 3183 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Extensive halogen-mediated ozone destruction over the tropical Atlantic Ocean. Nature, 2008, 453, 1232-1235.	27.8	432
2	Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network. Atmospheric Chemistry and Physics, 2016, 16, 11915-11935.	4.9	185
3	Tropospheric Ozone Assessment Report: Database and metrics data of global surface ozone observations. Elementa, 2017, 5, .	3.2	172
4	A two-column method for long-term monitoring of non-methane hydrocarbons (NMHCs) and oxygenated volatile organic compounds (o-VOCs). Journal of Environmental Monitoring, 2003, 5, 8-13.	2.1	98
5	Seasonal characteristics of tropical marine boundary layer air measured at the Cape Verde Atmospheric Observatory. Journal of Atmospheric Chemistry, 2010, 67, 87-140.	3.2	97
6	DMS and MSA measurements in the Antarctic Boundary Layer: impact of BrO on MSA production. Atmospheric Chemistry and Physics, 2008, 8, 2985-2997.	4.9	87
7	Multi-model study of mercury dispersion in the atmosphere: atmospheric processes and model evaluation. Atmospheric Chemistry and Physics, 2017, 17, 5271-5295.	4.9	76
8	Chemistry of the Antarctic Boundary Layer and the Interface with Snow: an overview of the CHABLIS campaign. Atmospheric Chemistry and Physics, 2008, 8, 3789-3803.	4.9	73
9	A flow-tube based laser-induced fluorescence instrument to measure OH reactivity in the troposphere. Atmospheric Measurement Techniques, 2009, 2, 465-477.	3.1	73
10	Multiannual Observations of Acetone, Methanol, and Acetaldehyde in Remote Tropical Atlantic Air: Implications for Atmospheric OVOC Budgets and Oxidative Capacity. Environmental Science & Emp; Technology, 2012, 46, 11028-11039.	10.0	70
11	OH and halogen atom influence on the variability of non-methane hydrocarbons in the Antarctic Boundary Layer. Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, 22-38.	1.6	69
12	The influence of biomass burning on the global distribution of selected non-methane organic compounds. Atmospheric Chemistry and Physics, 2013, 13, 851-867.	4.9	68
13	Reactive Halogens in the Marine Boundary Layer (RHaMBLe): the tropical North Atlantic experiments. Atmospheric Chemistry and Physics, 2010, 10, 1031-1055.	4.9	66
14	The North Atlantic Marine Boundary Layer Experiment (NAMBLEX). Overview of the campaign held at Mace Head, Ireland, in summer 2002. Atmospheric Chemistry and Physics, 2006, 6, 2241-2272.	4.9	65
15	Global impact of nitrate photolysis in sea-salt aerosol on NO _{OH, and O₃ in the marine boundary layer. Atmospheric Chemistry and Physics. 2018. 18, 11185-11203.}	4.9	62
16	Discrepancy between simulated and observed ethane and propane levels explained by underestimated fossil emissions. Nature Geoscience, 2018, 11, 178-184.	12.9	56
17	Uptake of methanol to the North Atlantic Ocean surface. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	51
18	Evidence for renoxification in the tropical marine boundary layer. Atmospheric Chemistry and Physics, 2017, 17, 4081-4092.	4.9	47

#	Article	IF	CITATIONS
19	Seasonal observations of OH and HO ₂ in the remote tropical marine boundary layer. Atmospheric Chemistry and Physics, 2012, 12, 2149-2172.	4.9	42
20	Measurement and calculation of OH reactivity at a United Kingdom coastal site. Journal of Atmospheric Chemistry, 2009, 64, 53-76.	3.2	38
21	Recent multivariate changes in the North Atlantic climate system, with a focus on 2005–2016. International Journal of Climatology, 2018, 38, 5050-5076.	3.5	34
22	Night-time radical chemistry during the NAMBLEX campaign. Atmospheric Chemistry and Physics, 2007, 7, 587-598.	4.9	28
23	Seasonal variation of peroxyacetylnitrate (PAN) in coastal Antarctica measured with a new instrument for the detection of sub-part per trillion mixing ratios of PAN. Atmospheric Chemistry and Physics, 2007, 7, 4589-4599.	4.9	26
24	Impacts of bromine and iodine chemistry on tropospheric OH and HO ₂ : comparing observations with box and global model perspectives. Atmospheric Chemistry and Physics, 2018, 18, 3541-3561.	4.9	24
25	Measurement and interpretation of gas phase formaldehyde concentrations obtained during the CHABLIS campaign in coastal Antarctica. Atmospheric Chemistry and Physics, 2008, 8, 4085-4093.	4.9	23
26	Mass deposition fluxes of Saharan mineral dust to the tropical northeast Atlantic Ocean: an intercomparison of methods. Atmospheric Chemistry and Physics, 2014, 14, 2245-2266.	4.9	22
27	Long-term NO _{<i>x</i>} measurements in the remote marine tropical troposphere. Atmospheric Measurement Techniques, 2021, 14, 3071-3085.	3.1	10
28	Four years (2011â€"2015) of total gaseous mercury measurements from the Cape Verde Atmospheric Observatory. Atmospheric Chemistry and Physics, 2017, 17, 5393-5406.	4.9	8
29	Quantifying bioaerosol concentrations in dust clouds through online UV-LIF and mass spectrometry measurements at the Cape Verde Atmospheric Observatory. Atmospheric Chemistry and Physics, 2020, 20, 14473-14490.	4.9	3
30	Observations and modelling of glyoxal in the tropical Atlantic marine boundary layer. Atmospheric Chemistry and Physics, 2022, 22, 5535-5557.	4.9	3
31	Perspectives and Integration in SOLAS Science. Springer Earth System Sciences, 2014, , 247-306.	0.2	2