christelle Marminon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4331721/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis, in silico study (DFT, ADMET) and crystal structure of novel sulfamoyloxy-oxazolidinones: Interaction with SARS-CoV-2. Journal of Molecular Structure, 2022, 1257, 132579.	3.6	5
2	Novel N-acylsulfamoyl-oxazolidin-2ones: Synthesis, antitumor activity, X-ray crystallographic study, molecular docking and POM analyses. Journal of Molecular Structure, 2022, 1262, 132935.	3.6	4
3	Ninhydrins inhibit carbonic anhydrases directly binding to the metal ion. European Journal of Medicinal Chemistry, 2021, 209, 112875.	5.5	18
4	Uncompetitive nanomolar dimeric indenoindole inhibitors of the human breast cancer resistance pump ABCG2. European Journal of Medicinal Chemistry, 2021, 211, 113017.	5.5	12
5	Mechanistic basis of breast cancer resistance protein inhibition by new indeno[1,2-b]indoles. Scientific Reports, 2021, 11, 1788.	3.3	17
6	Broad-Spectrum Anticancer Activity and Pharmacokinetic Properties of a Prenyloxy-Substituted Indeno[1,2-b]indole Derivative, Discovered as CK2 Inhibitor. Pharmaceuticals, 2021, 14, 542.	3.8	4
7	Microwave-accelerated multicomponent synthesis and X-ray characterization of novel benzothiadiazinone dioxide derivatives, analogues of Monastrol. Research on Chemical Intermediates, 2021, 47, 1359-1376.	2.7	12
8	QSAR Model of Indeno[1,2-b]indole Derivatives and Identification of N-isopentyl-2-methyl-4,9-dioxo-4,9-Dihydronaphtho[2,3-b]furan-3-carboxamide as a Potent CK2 Inhibitor. Molecules, 2020, 25, 97.	3.8	10
9	Novel α-sulfamidophosphonate analogues of fotemustine: efficient synthesis using ultrasound under solvent-free conditions. Monatshefte Für Chemie, 2020, 151, 1859-1865.	1.8	10
10	Diacritic Binding of an Indenoindole Inhibitor by CK2α Paralogs Explored by a Reliable Path to Atomic Resolution CK2I±â€² Structures. ACS Omega, 2019, 4, 5471-5478.	3.5	18
11	A comparative adsorption study of benzophenone-3 onto synthesized lipophilic organosilicate, Laponite and montmorillonite. Applied Clay Science, 2019, 170, 114-124.	5.2	16
12	Inhibition of Shiga toxin-converting bacteriophage development by novel antioxidant compounds. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 639-650.	5.2	8
13	Self-Assembled Supramolecular Nanoparticles Improve the Cytotoxic Efficacy of CK2 Inhibitor THN7. Pharmaceuticals, 2018, 11, 10.	3.8	5
14	Synthesis, Spectroscopic Characterization, and In Vitro Antibacterial Evaluation of Novel Functionalized Sulfamidocarbonyloxyphosphonates. Molecules, 2018, 23, 1682.	3.8	14
15	Unexpected Binding Mode of a Potent Indeno[1,2-b]indole-Type Inhibitor of Protein Kinase CK2 Revealed by Complex Structures with the Catalytic Subunit CK2α and Its Paralog CK2α′. Pharmaceuticals, 2017, 10, 98.	3.8	13
16	Development of Pharmacophore Model for Indeno[1,2-b]indoles as Human Protein Kinase CK2 Inhibitors and Database Mining. Pharmaceuticals, 2017, 10, 8.	3.8	26
17	Phenolic indeno[1,2-b]indoles as ABCG2-selective potent and non-toxic inhibitors stimulating basal ATPase activity. Drug Design, Development and Therapy, 2015, 9, 3481.	4.3	18
18	Microwave-assisted oxidation of indan-1-ones into ninhydrins. Tetrahedron Letters, 2015, 56, 1840-1842.	1.4	15

#	Article	IF	CITATIONS
19	Converting Potent Indeno[1,2- <i>b</i>]indole Inhibitors of Protein Kinase CK2 into Selective Inhibitors of the Breast Cancer Resistance Protein ABCG2. Journal of Medicinal Chemistry, 2015, 58, 265-277.	6.4	61
20	Preparation and characterization of CK2 inhibitor-loaded cyclodextrin nanoparticles for drug delivery. International Journal of Pharmaceutics, 2013, 441, 491-498.	5.2	21
21	Synthesis and modulation properties of imidazo[4,5-b]pyridin-7-one and indazole-4,7-dione derivatives towards the Cryptosporidium parvum CpABC3 transporter. European Journal of Medicinal Chemistry, 2010, 45, 2480-2488.	5.5	6
22	Diels-Alder Reactions between Acrolein N,N-Dimethylhydrazone and N-Benzylated Benzotriazole-, Indazole- or Indole-4,7-diones. Heterocycles, 2009, 78, 2799.	0.7	4
23	Rebeccamycin Derivatives as Dual DNA-Damaging Agents and Potent Checkpoint Kinase 1 Inhibitors. Molecular Pharmacology, 2008, 74, 1620-1629.	2.3	18
24	Synthesis of N-benzylated indole-, indazole- and benzotriazole-4,7-diones. Tetrahedron, 2007, 63, 735-739.	1.9	17
25	Semi-synthesis, topoisomerase I and kinases inhibitory properties, and antiproliferative activities of new rebeccamycin derivatives. Bioorganic and Medicinal Chemistry, 2003, 11, 4871-4879.	3.0	24
26	Syntheses and antiproliferative activities of rebeccamycin analogues bearing two 7-azaindole moieties. Bioorganic and Medicinal Chemistry, 2003, 11, 679-687.	3.0	38
27	Syntheses and Antiproliferative Activities of 7-Azarebeccamycin Analogues Bearing One 7-Azaindole Moiety. Journal of Medicinal Chemistry, 2003, 46, 609-622.	6.4	61
28	Syntheses and Antiproliferative Activities of New Rebeccamycin Derivatives with the Sugar Unit Linked to Both Indole Nitrogens. Journal of Medicinal Chemistry, 2002, 45, 1330-1339.	6.4	26
29	Dimers from dechlorinated rebeccamycin: synthesis, interaction with DNA, and antiproliferative activities. European Journal of Medicinal Chemistry, 2002, 37, 435-440.	5.5	9
30	DNA targeting of two new antitumour rebeccamycin derivatives. European Journal of Medicinal Chemistry, 2002, 37, 925-932.	5.5	16