List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/433145/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Repellency and toxicity of a CO2-derived cedarwood oil on hard tick species (Ixodidae). Experimental and Applied Acarology, 2022, 86, 299-312.	0.7	6
2	Blood meal source and mixed blood-feeding influence gut bacterial community composition in Aedes aegypti. Parasites and Vectors, 2021, 14, 83.	1.0	20
3	Insecticide resistance status in Anopheles gambiae (s.l.) in coastal Kenya. Parasites and Vectors, 2021, 14, 207.	1.0	15
4	The larval environment strongly influences the bacterial communities of Aedes triseriatus and Aedes japonicus (Diptera: Culicidae). Scientific Reports, 2021, 11, 7910.	1.6	9
5	Next generation sequencing approach for simultaneous identification of mosquitoes and their blood-meal hosts. Journal of Vector Ecology, 2021, 46, 116-121.	0.5	4
6	Insecticidal Activity of Commiphora erythraea Essential Oil and Its Emulsions Against Larvae of Three Mosquito Species. Journal of Medical Entomology, 2020, 57, 1835-1842.	0.9	9
7	Effect of life stage and pesticide exposure on the gut microbiota of Aedes albopictus and Culex pipiens L. Scientific Reports, 2020, 10, 9489.	1.6	12
8	Leptospermum scoparium essential oil is a promising source of mosquito larvicide and its toxicity is enhanced by a biobased emulsifier. PLoS ONE, 2020, 15, e0229076.	1.1	19
9	Microbial communities of container aquatic habitats shift in response to Culex restuans larvae. FEMS Microbiology Ecology, 2020, 96, .	1.3	6
10	Peptidoglycan Recognition Proteins (PGRPs) Modulates Mosquito Resistance to Fungal Entomopathogens in a Fungal-Strain Specific Manner. Frontiers in Cellular and Infection Microbiology, 2020, 9, 465.	1.8	11
11	Host blood meal source has a strong impact on gut microbiota of Aedes aegypti. FEMS Microbiology Ecology, 2019, 95, .	1.3	80
12	Amylose Inclusion Complexes as Emulsifiers for Garlic and Asafoetida Essential Oils for Mosquito Control. Insects, 2019, 10, 337.	1.0	7
13	Green, Yellow, and Red Fluorescent Proteins as Markers for Bacterial Isolates from Mosquito Midguts. Insects, 2019, 10, 49.	1.0	4
14	Host species and site of collection shape the microbiota of Rift Valley fever vectors in Kenya. PLoS Neglected Tropical Diseases, 2019, 13, e0007361.	1.3	4
15	Predicting the direct and indirect impacts of climate change on malaria in coastal Kenya. PLoS ONE, 2019, 14, e0211258.	1.1	33
16	Bioactivity of Wild Carrot (Daucus carota, Apiaceae) Essential Oil Against Mosquito Larvae. Journal of Medical Entomology, 2019, 56, 784-789.	0.9	17
17	The Aedes aegypti IMD pathway is a critical component of the mosquito antifungal immune response. Developmental and Comparative Immunology, 2019, 95, 1-9.	1.0	44
18	Honeysuckle essential oil as a potential source of ecofriendly larvicides for mosquito control. Pest Management Science, 2019, 75, 2043-2048.	1.7	20

#	Article	IF	CITATIONS
19	Container Size Alters the Outcome of Interspecific Competition Between Aedes aegypti (Diptera:) Tj ETQq1	0.7843]4 rgE	3T ₁ Overlock
20	Transgenic expression of a maize geranyl geranyl transferase gene sequence in maize callus increases resistance to ear rot pathogens. Agri Gene, 2018, 7, 52-58.	1.9	3
21	Environmental and social-demographic predictors of the southern house mosquito Culex quinquefasciatus in New Orleans, Louisiana. Parasites and Vectors, 2018, 11, 249.	1.0	24
22	Comparative Analysis of Gut Microbiota of Culex restuans (Diptera: Culicidae) Females From Different Parents. Journal of Medical Entomology, 2018, 55, 163-171.	0.9	5
23	Discovery and exploitation of a natural ecological trap for a mosquito disease vector. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181962.	1.2	16
24	Ovicidal and Larvicidal Effects of Garlic and Asafoetida Essential Oils Against West Nile Virus Vectors. Journal of Insect Science, 2018, 18, .	0.6	25
25	Entomopathogenic fungal infection leads to temporospatial modulation of the mosquito immune system. PLoS Neglected Tropical Diseases, 2018, 12, e0006433.	1.3	50
26	Strain-specific pathogenicity and subversion of phenoloxidase activity in the mosquito Aedes aegypti by members of the fungal entomopathogenic genus Isaria. Scientific Reports, 2018, 8, 9896.	1.6	25
27	Mosquito microbiota cluster by host sampling location. Parasites and Vectors, 2018, 11, 468.	1.0	61
28	Copula Modeling of Differential Effect of Leaf Species on Aedes albopictus Development Time. Environment and Natural Resources Research, 2018, 8, 1.	0.1	0
29	Superinfection interference between dengueâ€2 and dengueâ€4 viruses in <i>Aedes aegypti</i> mosquitoes Tropical Medicine and International Health, 2017, 22, 399-406.	• 1.0	11
30	Effect of pesticides on microbial communities in container aquatic habitats. Scientific Reports, 2017, 7, 44565.	1.6	114
31	Combined Toxicity of Three Essential Oils Against Aedes aegypti (Diptera: Culicidae) Larvae. Journal of Medical Entomology, 2017, 54, 1684-1691.	0.9	44
32	Characterization of <i>Tolypocladium cylindrosporum</i> (Hypocreales: Ophiocordycipitaceae) and Its Impact Against <i>Aedes aegypti</i> and <i>Aedes albopictus</i> Eggs at Low Temperature. Journal of the American Mosquito Control Association, 2017, 33, 184-192.	0.2	8
33	Large-Scale Removal of Invasive Honeysuckle Decreases Mosquito and Avian Host Abundance. EcoHealth, 2017, 14, 750-761.	0.9	18
34	Comparative analysis of gut microbiota of mosquito communities in central Illinois. PLoS Neglected Tropical Diseases, 2017, 11, e0005377.	1.3	146
35	Epidemiology of La Crosse Virus Emergence, Appalachia Region, United States. Emerging Infectious Diseases, 2016, 22, 1921-1929.	2.0	29
36	Agricultural chemicals: life changer for mosquito vectors in agricultural landscapes?. Parasites and Vectors, 2016, 9, 500.	1.0	31

#	Article	IF	CITATIONS
37	Midgut fungal and bacterial microbiota of <i>Aedes triseriatus</i> and <i>Aedes japonicus</i> shift in response to LaÂCrosse virus infection. Molecular Ecology, 2016, 25, 4075-4090.	2.0	82
38	Association between fertilizer-mediated changes in microbial communities and Aedes albopictus growth and survival. Acta Tropica, 2016, 164, 54-63.	0.9	9
39	Comparative Susceptibility of <i>Ochlerotatus japonicus </i> , <i>Ochlerotatus triseriatus, Aedes albopictus, </i> and <i>Aedes aegypti </i> (Diptera: Culicidae) to La Crosse Virus. Journal of Medical Entomology, 2016, 53, 1415-1421.	0.9	22
40	Culex pipiens and Culex restuans mosquitoes harbor distinct microbiota dominated by few bacterial taxa. Parasites and Vectors, 2016, 9, 18.	1.0	95
41	How do Nutritional Stress and La Crosse Virus Infection Interact? Tests for Effects on Willingness to Blood Feed and Fecundity in <i>Aedes albopictus</i> (Diptera: Culicidae). Journal of Medical Entomology, 2016, 53, 166-171.	0.9	6
42	Asymmetric effects of native and exotic invasive shrubs on ecology of the West Nile virus vector Culex pipiens (Diptera: Culicidae). Parasites and Vectors, 2015, 8, 329.	1.0	22
43	Sindbis virus interferes with dengue 4 virus replication and its potential transmission by Aedes albopictus. Parasites and Vectors, 2015, 8, 65.	1.0	16
44	Bacterial Communities and Midgut Microbiota Associated with Mosquito Populations from Waste Tires in East-Central Illinois. Journal of Medical Entomology, 2015, 52, 63-75.	0.9	36
45	Container Type Influences the Relative Abundance, Body Size, and Susceptibility of Ochlerotatus triseriatus (Diptera: Culicidae) to La Crosse Virus. Journal of Medical Entomology, 2015, 52, 452-460.	0.9	7
46	Impact of an Alien Invasive Shrub on Ecology of Native and Alien Invasive Mosquito Species (Diptera:) Tj ETQq0 C) 0 rgBT /C	Overlock 10 Tf
47	Effect of Larval Competition on Extrinsic Incubation Period and Vectorial Capacity of Aedes albopictus for Dengue Virus. PLoS ONE, 2015, 10, e0126703.	1.1	49
48	Land Use Patterns and the Risk of West Nile Virus Transmission in Central Illinois. Vector-Borne and Zoonotic Diseases, 2014, 14, 338-345.	0.6	25
49	The Importance of Oxidases in the Tolerance of Deciduous Leaf Infusions by <l>Aedes</l> (<l>Stegomyia</l>) <l>aegypti</l> and <l>Aedes</l> (<l>Stegomyia</l>) <l>albopictus</l> (Diptera: Culicidae). Journal of Medical Entomology, 2014, 51, 68-75	0.9	Ο
50	Influence of biofuel crops on mosquito production and oviposition site selection. GCB Bioenergy, 2014, 6, 61-66.	2.5	4
51	Sublethal effects of atrazine and glyphosate on life history traits of Aedes aegypti and Aedes albopictus (Diptera: Culicidae). Parasitology Research, 2014, 113, 2879-2886.	0.6	30
52	Effect of mixed infections of Sindbis and La Crosse viruses on replication of each virus in vitro. Acta Tropica, 2014, 130, 71-75.	0.9	13
53	Shifts in malaria vector species composition and transmission dynamics along the Kenyan coast over the past 20 years. Malaria Journal, 2013, 12, 13.	0.8	183
54	West Nile Virus Infection Rates and Avian Serology in East-Central Illinois. Journal of the American Mosquito Control Association, 2013, 29, 108-122.	0.2	7

#	Article	IF	CITATIONS
55	Larval rearing temperature influences the effect of malathion on Aedes aegypti life history traits and immune responses. Chemosphere, 2013, 92, 1111-1116.	4.2	15
56	Effect of larval density and Sindbis virus infection on immune responses in Aedes aegypti. Journal of Insect Physiology, 2013, 59, 604-610.	0.9	14
57	Ecology and Behavior of Anopheles arabiensis in Relation to Agricultural Practices in Central Kenya. Journal of the American Mosquito Control Association, 2013, 29, 222-230.	0.2	9
58	Pesticide-Induced Release From Competition Among Competing <i>Aedes aegypti</i> and <i>Aedes albopictus</i> (Diptera: Culicidae). Journal of Medical Entomology, 2013, 50, 1240-1249.	0.9	21
59	Effect of Leaf Type and Pesticide Exposure on Abundance of Bacterial Taxa in Mosquito Larval Habitats. PLoS ONE, 2013, 8, e71812.	1.1	23
60	Influence of Leaf Detritus Type on Production and Longevity of Container-Breeding Mosquitoes. Environmental Entomology, 2012, 41, 1062-1068.	0.7	25
61	Temperature-Mediated Differential Expression of Immune and Stress-Related Genes in Aedes aegypti Larvae. Journal of the American Mosquito Control Association, 2012, 28, 79-83.	0.2	17
62	Relationship between leaf litter identity, expression of cytochrome P450 genes and life history traits of Aedes aegypti and Aedes albopictus. Acta Tropica, 2012, 122, 94-100.	0.9	15
63	Temperature and density-dependent effects of larval environment on Aedes aegypti competence for an alphavirus. Journal of Vector Ecology, 2012, 37, 154-161.	0.5	47
64	Larval environmental stress alters <i>Aedes aegypti</i> competence for Sindbis virus. Tropical Medicine and International Health, 2011, 16, 955-964.	1.0	128
65	Can Pesticides and Larval Competition Alter Susceptibility of Aedes Mosquitoes (Diptera: Culicidae) to Arbovirus Infection?. Journal of Medical Entomology, 2011, 48, 429-436.	0.9	46
66	Traitâ€mediated effects of predation across lifeâ€history stages in container mosquitoes. Ecological Entomology, 2011, 36, 605-615.	1.1	35
67	Larval Environmental Temperature and Insecticide Exposure Alter <i>Aedes aegypti</i> Competence for Arboviruses. Vector-Borne and Zoonotic Diseases, 2011, 11, 1157-1163.	0.6	82
68	Effect of Temperature and Insecticide Stress on Life-History Traits of Culex restuans and Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology, 2011, 48, 243-250.	0.9	60
69	Interspecies Predation Between <i>Anopheles gambiae</i> s.s. and <i>Culex quinquefasciatus</i> Larvae. Journal of Medical Entomology, 2010, 47, 287-290.	0.9	13
70	Interspecies Predation Between <i>Anopheles gambiae</i> s.s. and <i>Culex quinquefasciatus</i> Larvae. Journal of Medical Entomology, 2010, 47, 287-290.	0.9	11
71	Population Genetic Structure of <i>Anopheles Arabiensis</i> (Diptera: Culicidae) in a Rice Growing Area of Central Kenya. Journal of Medical Entomology, 2010, 47, 144-151.	0.9	7
72	Population structure of Anopheles gambiae along the Kenyan coast. Acta Tropica, 2010, 114, 103-108.	0.9	16

#	Article	IF	CITATIONS
73	Interaction of a pesticide and larval competition on life history traits of Culex pipiens. Acta Tropica, 2010, 116, 141-146.	0.9	26
74	Spatiotemporal dynamics of immature culicines (subfamily Culicinae) and their larval habitats in Mwea Rice Scheme, Kenya. Parasitology Research, 2009, 104, 851-859.	0.6	2
75	Spatial distribution, blood feeding pattern, and role of Anopheles funestus complex in malaria transmission in central Kenya. Parasitology Research, 2009, 105, 1041-1046.	0.6	13
76	Describing Anopheles arabiensis aquatic habitats in two riceland agro-ecosystems in Mwea, Kenya using a negative binomial regression model with a non-homogenous mean. Acta Tropica, 2009, 109, 17-26.	0.9	2
77	Seasonal mosquito larval abundance and composition in Kibwezi, lower eastern Kenya. Journal of Vector Borne Diseases, 2009, 46, 65-71.	0.1	13
78	Blood-feeding patterns of Culex quinquefasciatus and other culicines and implications for disease transmission in Mwea rice scheme, Kenya. Parasitology Research, 2008, 102, 1329-1335.	0.6	44
79	A Spatial Filtering Specification for an Autoâ€negative Binomial Model of <i>Anopheles arabiensis</i> Aquatic Habitats. Transactions in GIS, 2008, 12, 515-539.	1.0	7
80	Environmental factors associated with the distribution of Anopheles arabiensis and Culex quinquefasciatus in a rice agro-ecosystem in Mwea, Kenya. Journal of Vector Ecology, 2008, 33, 56-63.	0.5	60
81	Host choice and multiple blood feeding behaviour of malaria vectors and other anophelines in Mwea rice scheme, Kenya. Malaria Journal, 2008, 7, 43.	0.8	70
82	Distribution of Mosquito Larvae Within the Paddy and Its Implication in Larvicidal Application in Mwea Rice Irrigation Scheme, Central Kenya. Journal of the American Mosquito Control Association, 2008, 24, 36-41.	0.2	6
83	Contribution of different aquatic habitats to adult Anopheles arabiensis and Culex quinquefasciatus (Diptera: Culicidae) production in a rice agroecosystem in Mwea, Kenya. Journal of Vector Ecology, 2008, 33, 129-138.	0.5	23
84	Diversity of Riceland Mosquitoes and Factors Affecting Their Occurrence and Distribution in Mwea, Kenya. Journal of the American Mosquito Control Association, 2008, 24, 349-358.	0.2	13
85	Effect of Rice Cultivation on Malaria Transmission in Central Kenya. American Journal of Tropical Medicine and Hygiene, 2008, 78, 270-275.	0.6	35
86	Effect of rice cultivation on malaria transmission in central Kenya. American Journal of Tropical Medicine and Hygiene, 2008, 78, 270-5.	0.6	25
87	Malaria vector management: where have we come from and where are we headed?. American Journal of Tropical Medicine and Hygiene, 2008, 78, 536-7.	0.6	12
88	Evaluation of Four Sampling Techniques for Surveillance of <i>Culex quinquefasciatus</i> (Diptera:) Tj ETQq0 0 0 r 2007, 44, 503-508.	gBT /Over 0.9	lock 10 Tf 50
89	Mosquito Species Succession and Physicochemical Factors Affecting Their Abundance in Rice Fields in Mwea, Kenya. Journal of Medical Entomology, 2007, 44, 336-344.	0.9	37
90	Evaluation of Four Sampling Techniques for Surveillance of <i>Culex quinquefasciatus</i> (Diptera:) Tj ETQq0 0 0	rgBT /Ove 0.9	erlock 10 Tf 5 20

#	Article	IF	CITATIONS
91	ENVIRONMENTAL COVARIATES OF ANOPHELES ARABIENSIS IN A RICE AGROECOSYSTEM IN MWEA, CENTRAL KENYA. Journal of the American Mosquito Control Association, 2007, 23, 371-377.	0.2	17
92	Are coinfections of malaria and filariasis of any epidemiological significance?. Parasitology Research, 2007, 102, 175-181.	0.6	34
93	Mosquito species succession and physicochemical factors affecting their abundance in rice fields in Mwea, Kenya. Journal of Medical Entomology, 2007, 44, 336-44.	0.9	33
94	LARVAL HABITAT DYNAMICS AND DIVERSITY OF CULEX MOSQUITOES IN RICE AGRO-ECOSYSTEM IN MWEA, KENYA. American Journal of Tropical Medicine and Hygiene, 2007, 76, 95-102.	0.6	39
95	Influence of biological and physicochemical characteristics of larval habitats on the body size of Anopheles gambiae mosquitoes (Diptera: Culicidae) along the Kenyan coast. Journal of Vector Borne Diseases, 2007, 44, 122-7.	0.1	25
96	Spatial distribution and habitat characterisation of Anopheles larvae along the Kenyan coast. Journal of Vector Borne Diseases, 2007, 44, 44-51.	0.1	46
97	Larval habitat dynamics and diversity of Culex mosquitoes in rice agro-ecosystem in Mwea, Kenya. American Journal of Tropical Medicine and Hygiene, 2007, 76, 95-102.	0.6	20
98	Laboratory studies on the effect of inorganic fertilizers on survival and development of immature Culex quinquefasciatus (Diptera: Culicidae). Journal of Vector Borne Diseases, 2007, 44, 259-65.	0.1	1
99	Mosquito species diversity and abundance in relation to land use in a riceland agroecosystem in Mwea, Kenya. Journal of Vector Ecology, 2006, 31, 129-137.	0.5	67
100	Concomitant infections of Plasmodium falciparum and Wuchereria bancrofti on the Kenyan coast. Parasites and Vectors, 2006, 5, 8.	1.3	43
101	Dynamics of immature stages of Anopheles arabiensis and other mosquito species (Diptera: Culicidae) in relation to rice cropping in a rice agro-ecosystem in Kenya. Journal of Vector Ecology, 2006, 31, 245-251.	0.5	27
102	Relationship between malaria and filariasis transmission indices in an endemic area along the Kenyan Coast. Journal of Vector Borne Diseases, 2006, 43, 77-83.	0.1	11
103	Influence of vegetation and vegetation management on Culex mosquitoes in surface stormwater habitats. Wetlands Ecology and Management, 0, , 1.	0.7	0