Ephantus J Muturi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/433145/publications.pdf

Version: 2024-02-01

103 papers

2,938 citations

30 h-index 214721 47 g-index

103 all docs

 $\begin{array}{c} 103 \\ \\ \text{docs citations} \end{array}$

103 times ranked 2595 citing authors

#	Article	IF	CITATIONS
1	Shifts in malaria vector species composition and transmission dynamics along the Kenyan coast over the past 20 years. Malaria Journal, 2013, 12, 13.	0.8	183
2	Comparative analysis of gut microbiota of mosquito communities in central Illinois. PLoS Neglected Tropical Diseases, 2017, 11, e0005377.	1.3	146
3	Larval environmental stress alters <i>Aedes aegypti</i> competence for Sindbis virus. Tropical Medicine and International Health, 2011, 16, 955-964.	1.0	128
4	Effect of pesticides on microbial communities in container aquatic habitats. Scientific Reports, 2017, 7, 44565.	1.6	114
5	Culex pipiens and Culex restuans mosquitoes harbor distinct microbiota dominated by few bacterial taxa. Parasites and Vectors, 2016, 9, 18.	1.0	95
6	Larval Environmental Temperature and Insecticide Exposure Alter <i>Aedes aegypti</i> Competence for Arboviruses. Vector-Borne and Zoonotic Diseases, 2011, 11, 1157-1163.	0.6	82
7	Midgut fungal and bacterial microbiota of <i>Aedes triseriatus</i> and <i>Aedes japonicus</i> shift in response to LaÂCrosse virus infection. Molecular Ecology, 2016, 25, 4075-4090.	2.0	82
8	Host blood meal source has a strong impact on gut microbiota of Aedes aegypti. FEMS Microbiology Ecology, 2019, 95, .	1.3	80
9	Host choice and multiple blood feeding behaviour of malaria vectors and other anophelines in Mwea rice scheme, Kenya. Malaria Journal, 2008, 7, 43.	0.8	70
10	Mosquito species diversity and abundance in relation to land use in a riceland agroecosystem in Mwea, Kenya. Journal of Vector Ecology, 2006, 31, 129-137.	0.5	67
11	Mosquito microbiota cluster by host sampling location. Parasites and Vectors, 2018, 11, 468.	1.0	61
12	Environmental factors associated with the distribution of Anopheles arabiensis and Culex quinquefasciatus in a rice agro-ecosystem in Mwea, Kenya. Journal of Vector Ecology, 2008, 33, 56-63.	0.5	60
13	Effect of Temperature and Insecticide Stress on Life-History Traits of Culex restuans and Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology, 2011, 48, 243-250.	0.9	60
14	Entomopathogenic fungal infection leads to temporospatial modulation of the mosquito immune system. PLoS Neglected Tropical Diseases, 2018, 12, e0006433.	1.3	50
15	Effect of Larval Competition on Extrinsic Incubation Period and Vectorial Capacity of Aedes albopictus for Dengue Virus. PLoS ONE, 2015, 10, e0126703.	1.1	49
16	Temperature and density-dependent effects of larval environment on Aedes aegypti competence for an alphavirus. Journal of Vector Ecology, 2012, 37, 154-161.	0.5	47
17	Can Pesticides and Larval Competition Alter Susceptibility of Aedes Mosquitoes (Diptera: Culicidae) to Arbovirus Infection?. Journal of Medical Entomology, 2011, 48, 429-436.	0.9	46
18	Spatial distribution and habitat characterisation of Anopheles larvae along the Kenyan coast. Journal of Vector Borne Diseases, 2007, 44, 44-51.	0.1	46

#	Article	IF	Citations
19	Blood-feeding patterns of Culex quinquefasciatus and other culicines and implications for disease transmission in Mwea rice scheme, Kenya. Parasitology Research, 2008, 102, 1329-1335.	0.6	44
20	Combined Toxicity of Three Essential Oils Against Aedes aegypti (Diptera: Culicidae) Larvae. Journal of Medical Entomology, 2017, 54, 1684-1691.	0.9	44
21	The Aedes aegypti IMD pathway is a critical component of the mosquito antifungal immune response. Developmental and Comparative Immunology, 2019, 95, 1-9.	1.0	44
22	Concomitant infections of Plasmodium falciparum and Wuchereria bancrofti on the Kenyan coast. Parasites and Vectors, 2006, 5, 8.	1.3	43
23	LARVAL HABITAT DYNAMICS AND DIVERSITY OF CULEX MOSQUITOES IN RICE AGRO-ECOSYSTEM IN MWEA, KENYA. American Journal of Tropical Medicine and Hygiene, 2007, 76, 95-102.	0.6	39
24	Mosquito Species Succession and Physicochemical Factors Affecting Their Abundance in Rice Fields in Mwea, Kenya. Journal of Medical Entomology, 2007, 44, 336-344.	0.9	37
25	Bacterial Communities and Midgut Microbiota Associated with Mosquito Populations from Waste Tires in East-Central Illinois. Journal of Medical Entomology, 2015, 52, 63-75.	0.9	36
26	Traitâ€mediated effects of predation across lifeâ€history stages in container mosquitoes. Ecological Entomology, 2011, 36, 605-615.	1.1	35
27	Effect of Rice Cultivation on Malaria Transmission in Central Kenya. American Journal of Tropical Medicine and Hygiene, 2008, 78, 270-275.	0.6	35
28	Are coinfections of malaria and filariasis of any epidemiological significance?. Parasitology Research, 2007, 102, 175-181.	0.6	34
29	Predicting the direct and indirect impacts of climate change on malaria in coastal Kenya. PLoS ONE, 2019, 14, e0211258.	1.1	33
30	Mosquito species succession and physicochemical factors affecting their abundance in rice fields in Mwea, Kenya. Journal of Medical Entomology, 2007, 44, 336-44.	0.9	33
31	Agricultural chemicals: life changer for mosquito vectors in agricultural landscapes?. Parasites and Vectors, 2016, 9, 500.	1.0	31
32	Sublethal effects of atrazine and glyphosate on life history traits of Aedes aegypti and Aedes albopictus (Diptera: Culicidae). Parasitology Research, 2014, 113, 2879-2886.	0.6	30
33	Epidemiology of La Crosse Virus Emergence, Appalachia Region, United States. Emerging Infectious Diseases, 2016, 22, 1921-1929.	2.0	29
34	Dynamics of immature stages of Anopheles arabiensis and other mosquito species (Diptera: Culicidae) in relation to rice cropping in a rice agro-ecosystem in Kenya. Journal of Vector Ecology, 2006, 31, 245-251.	0.5	27
35	Interaction of a pesticide and larval competition on life history traits of Culex pipiens. Acta Tropica, 2010, 116, 141-146.	0.9	26
36	Influence of Leaf Detritus Type on Production and Longevity of Container-Breeding Mosquitoes. Environmental Entomology, 2012, 41, 1062-1068.	0.7	25

#	Article	IF	CITATIONS
37	Land Use Patterns and the Risk of West Nile Virus Transmission in Central Illinois. Vector-Borne and Zoonotic Diseases, 2014, 14, 338-345.	0.6	25
38	Ovicidal and Larvicidal Effects of Garlic and Asafoetida Essential Oils Against West Nile Virus Vectors. Journal of Insect Science, 2018, 18, .	0.6	25
39	Strain-specific pathogenicity and subversion of phenoloxidase activity in the mosquito Aedes aegypti by members of the fungal entomopathogenic genus Isaria. Scientific Reports, 2018, 8, 9896.	1.6	25
40	Influence of biological and physicochemical characteristics of larval habitats on the body size of Anopheles gambiae mosquitoes (Diptera: Culicidae) along the Kenyan coast. Journal of Vector Borne Diseases, 2007, 44, 122-7.	0.1	25
41	Effect of rice cultivation on malaria transmission in central Kenya. American Journal of Tropical Medicine and Hygiene, 2008, 78, 270-5.	0.6	25
42	Environmental and social-demographic predictors of the southern house mosquito Culex quinquefasciatus in New Orleans, Louisiana. Parasites and Vectors, 2018, 11, 249.	1.0	24
43	Contribution of different aquatic habitats to adult Anopheles arabiensis and Culex quinquefasciatus (Diptera: Culicidae) production in a rice agroecosystem in Mwea, Kenya. Journal of Vector Ecology, 2008, 33, 129-138.	0.5	23
44	Effect of Leaf Type and Pesticide Exposure on Abundance of Bacterial Taxa in Mosquito Larval Habitats. PLoS ONE, 2013, 8, e71812.	1.1	23
45	Evaluation of Four Sampling Techniques for Surveillance of <i>Culex quinquefasciatus </i>	784314 rg 0.9	BT /Overlock 22
46	Asymmetric effects of native and exotic invasive shrubs on ecology of the West Nile virus vector Culex pipiens (Diptera: Culicidae). Parasites and Vectors, 2015, 8, 329.	1.0	22
47	Comparative Susceptibility of <i> Ochlerotatus japonicus </i> , <i> Ochlerotatus triseriatus, Aedes albopictus, </i> albopictus, Aedes aegypti (Diptera: Culicidae) to La Crosse Virus. Journal of Medical Entomology, 2016, 53, 1415-1421.	0.9	22
48	Pesticide-Induced Release From Competition Among Competing <l>Aedes aegypti</l> and <l>Aedes albopictus</l> (Diptera: Culicidae). Journal of Medical Entomology, 2013, 50, 1240-1249.	0.9	21
49	Evaluation of Four Sampling Techniques for Surveillance of <i>Culex quinquefasciatus</i> (Diptera:) Tj ETQq1 1 0 2007, 44, 503-508.	.784314 r 0.9	gBT /Overlo
50	Honeysuckle essential oil as a potential source of ecofriendly larvicides for mosquito control. Pest Management Science, 2019, 75, 2043-2048.	1.7	20
51	Blood meal source and mixed blood-feeding influence gut bacterial community composition in Aedes aegypti. Parasites and Vectors, 2021, 14, 83.	1.0	20
52	Larval habitat dynamics and diversity of Culex mosquitoes in rice agro-ecosystem in Mwea, Kenya. American Journal of Tropical Medicine and Hygiene, 2007, 76, 95-102.	0.6	20
53	Leptospermum scoparium essential oil is a promising source of mosquito larvicide and its toxicity is enhanced by a biobased emulsifier. PLoS ONE, 2020, 15, e0229076.	1.1	19
54	Large-Scale Removal of Invasive Honeysuckle Decreases Mosquito and Avian Host Abundance. EcoHealth, 2017, 14, 750-761.	0.9	18

#	Article	IF	CITATIONS
55	ENVIRONMENTAL COVARIATES OF ANOPHELES ARABIENSIS IN A RICE AGROECOSYSTEM IN MWEA, CENTRAL KENYA. Journal of the American Mosquito Control Association, 2007, 23, 371-377.	0.2	17
56	Temperature-Mediated Differential Expression of Immune and Stress-Related Genes in Aedes aegypti Larvae. Journal of the American Mosquito Control Association, 2012, 28, 79-83.	0.2	17
57	Bioactivity of Wild Carrot (Daucus carota, Apiaceae) Essential Oil Against Mosquito Larvae. Journal of Medical Entomology, 2019, 56, 784-789.	0.9	17
58	Population structure of Anopheles gambiae along the Kenyan coast. Acta Tropica, 2010, 114, 103-108.	0.9	16
59	Sindbis virus interferes with dengue 4 virus replication and its potential transmission by Aedes albopictus. Parasites and Vectors, 2015, 8, 65.	1.0	16
60	Discovery and exploitation of a natural ecological trap for a mosquito disease vector. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181962.	1.2	16
61	Relationship between leaf litter identity, expression of cytochrome P450 genes and life history traits of Aedes aegypti and Aedes albopictus. Acta Tropica, 2012, 122, 94-100.	0.9	15
62	Larval rearing temperature influences the effect of malathion on Aedes aegypti life history traits and immune responses. Chemosphere, 2013, 92, 1111-1116.	4.2	15
63	Container Size Alters the Outcome of Interspecific Competition Between Aedes aegypti (Diptera:) Tj ETQq1 1 0.3	784314 rg	BT_/Overlock
64	Insecticide resistance status in Anopheles gambiae (s.l.) in coastal Kenya. Parasites and Vectors, 2021, 14, 207.	1.0	15
65	Effect of larval density and Sindbis virus infection on immune responses in Aedes aegypti. Journal of Insect Physiology, 2013, 59, 604-610.	0.9	14
66	Diversity of Riceland Mosquitoes and Factors Affecting Their Occurrence and Distribution in Mwea, Kenya. Journal of the American Mosquito Control Association, 2008, 24, 349-358.	0.2	13
67	Spatial distribution, blood feeding pattern, and role of Anopheles funestus complex in malaria transmission in central Kenya. Parasitology Research, 2009, 105, 1041-1046.	0.6	13
68	Interspecies Predation Between <i>Anopheles gambiae</i> s.s. and <i>Culex quinquefasciatus</i> Larvae. Journal of Medical Entomology, 2010, 47, 287-290.	0.9	13
69	Effect of mixed infections of Sindbis and La Crosse viruses on replication of each virus in vitro. Acta Tropica, 2014, 130, 71-75.	0.9	13
70	Seasonal mosquito larval abundance and composition in Kibwezi, lower eastern Kenya. Journal of Vector Borne Diseases, 2009, 46, 65-71.	0.1	13
71	Effect of life stage and pesticide exposure on the gut microbiota of Aedes albopictus and Culex pipiens L. Scientific Reports, 2020, 10, 9489.	1.6	12
72	Malaria vector management: where have we come from and where are we headed?. American Journal of Tropical Medicine and Hygiene, 2008, 78, 536-7.	0.6	12

#	Article	IF	Citations
73	Interspecies Predation Between <i>Anopheles gambiae</i> s.s. and <i>Culex quinquefasciatus</i> Larvae. Journal of Medical Entomology, 2010, 47, 287-290.	0.9	11
74	Superinfection interference between dengueâ€2 and dengueâ€4 viruses in <i>Aedes aegypti</i> hi> mosquitoes. Tropical Medicine and International Health, 2017, 22, 399-406.	1.0	11
7 5	Peptidoglycan Recognition Proteins (PGRPs) Modulates Mosquito Resistance to Fungal Entomopathogens in a Fungal-Strain Specific Manner. Frontiers in Cellular and Infection Microbiology, 2020, 9, 465.	1.8	11
76	Relationship between malaria and filariasis transmission indices in an endemic area along the Kenyan Coast. Journal of Vector Borne Diseases, 2006, 43, 77-83.	0.1	11
77	Impact of an Alien Invasive Shrub on Ecology of Native and Alien Invasive Mosquito Species (Diptera:) Tj ETQq1 1	0.784314	rgBT /Over
78	Ecology and Behavior of Anopheles arabiensis in Relation to Agricultural Practices in Central Kenya. Journal of the American Mosquito Control Association, 2013, 29, 222-230.	0.2	9
79	Association between fertilizer-mediated changes in microbial communities and Aedes albopictus growth and survival. Acta Tropica, 2016, 164, 54-63.	0.9	9
80	Insecticidal Activity of Commiphora erythraea Essential Oil and Its Emulsions Against Larvae of Three Mosquito Species. Journal of Medical Entomology, 2020, 57, 1835-1842.	0.9	9
81	The larval environment strongly influences the bacterial communities of Aedes triseriatus and Aedes japonicus (Diptera: Culicidae). Scientific Reports, 2021, 11, 7910.	1.6	9
82	Characterization of <i>Tolypocladium cylindrosporum</i> (Hypocreales: Ophiocordycipitaceae) and Its Impact Against <i>Aedes aegypti</i> and <i>Aedes albopictus</i> Eggs at Low Temperature. Journal of the American Mosquito Control Association, 2017, 33, 184-192.	0.2	8
83	A Spatial Filtering Specification for an Autoâ€negative Binomial Model of <i>Anopheles arabiensis</i> Aquatic Habitats. Transactions in GIS, 2008, 12, 515-539.	1.0	7
84	Population Genetic Structure of <l>Anopheles Arabiensis</l> (Diptera: Culicidae) in a Rice Growing Area of Central Kenya. Journal of Medical Entomology, 2010, 47, 144-151.	0.9	7
85	West Nile Virus Infection Rates and Avian Serology in East-Central Illinois. Journal of the American Mosquito Control Association, 2013, 29, 108-122.	0.2	7
86	Container Type Influences the Relative Abundance, Body Size, and Susceptibility of Ochlerotatus triseriatus (Diptera: Culicidae) to La Crosse Virus. Journal of Medical Entomology, 2015, 52, 452-460.	0.9	7
87	Amylose Inclusion Complexes as Emulsifiers for Garlic and Asafoetida Essential Oils for Mosquito Control. Insects, 2019, 10, 337.	1.0	7
88	Distribution of Mosquito Larvae Within the Paddy and Its Implication in Larvicidal Application in Mwea Rice Irrigation Scheme, Central Kenya. Journal of the American Mosquito Control Association, 2008, 24, 36-41.	0.2	6
89	How do Nutritional Stress and La Crosse Virus Infection Interact? Tests for Effects on Willingness to Blood Feed and Fecundity in <i>Aedes albopictus</i> Cliptera: Culicidae). Journal of Medical Entomology, 2016, 53, 166-171.	0.9	6
90	Microbial communities of container aquatic habitats shift in response to Culex restuans larvae. FEMS Microbiology Ecology, 2020, 96, .	1.3	6

#	Article	IF	Citations
91	Repellency and toxicity of a CO2-derived cedarwood oil on hard tick species (Ixodidae). Experimental and Applied Acarology, 2022, 86, 299-312.	0.7	6
92	Comparative Analysis of Gut Microbiota of Culex restuans (Diptera: Culicidae) Females From Different Parents. Journal of Medical Entomology, 2018, 55, 163-171.	0.9	5
93	Influence of biofuel crops on mosquito production and oviposition site selection. GCB Bioenergy, 2014, 6, 61-66.	2.5	4
94	Green, Yellow, and Red Fluorescent Proteins as Markers for Bacterial Isolates from Mosquito Midguts. Insects, 2019, 10, 49.	1.0	4
95	Host species and site of collection shape the microbiota of Rift Valley fever vectors in Kenya. PLoS Neglected Tropical Diseases, 2019, 13, e0007361.	1.3	4
96	Next generation sequencing approach for simultaneous identification of mosquitoes and their blood-meal hosts. Journal of Vector Ecology, 2021, 46, 116-121.	0.5	4
97	Transgenic expression of a maize geranyl geranyl transferase gene sequence in maize callus increases resistance to ear rot pathogens. Agri Gene, 2018, 7, 52-58.	1.9	3
98	Spatiotemporal dynamics of immature culicines (subfamily Culicinae) and their larval habitats in Mwea Rice Scheme, Kenya. Parasitology Research, 2009, 104, 851-859.	0.6	2
99	Describing Anopheles arabiensis aquatic habitats in two riceland agro-ecosystems in Mwea, Kenya using a negative binomial regression model with a non-homogenous mean. Acta Tropica, 2009, 109, 17-26.	0.9	2
100	Laboratory studies on the effect of inorganic fertilizers on survival and development of immature Culex quinquefasciatus (Diptera: Culicidae). Journal of Vector Borne Diseases, 2007, 44, 259-65.	0.1	1
101	The Importance of Oxidases in the Tolerance of Deciduous Leaf Infusions by <l>Aedes</l> (<l>Stegomyia</l>) <l>aegypti</l> and <l>Aedes</l> (<l>Hegt;Stegomyia</l>) <l>albopictus</l> (Diptera: Culicidae). Journal of Medical Entomology, 2014, 51, 68-75.	0.9	0
102	Influence of vegetation and vegetation management on Culex mosquitoes in surface stormwater habitats. Wetlands Ecology and Management, 0 , 1 .	0.7	0
103	Copula Modeling of Differential Effect of Leaf Species on Aedes albopictus Development Time. Environment and Natural Resources Research, 2018, 8, 1.	0.1	O