
Pedro Henrique Hermes de Araujo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/433131/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation and cellular uptake behaviors of uniform fiber-like micelles with length controllability and high colloidal stability in aqueous media. Fundamental Research, 2023, 3, 93-101.	1.6	21
2	Catalytically active membranes for esterification: A review. Chinese Journal of Chemical Engineering, 2023, 53, 142-154.	1.7	3
3	Zinc phthalocyanine encapsulation via thiol-ene miniemulsion polymerization and <i>inÂvitro</i> photoxicity studies. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 349-358.	1.8	5
4	Xanthan gum-based film-forming suspension containing essential oils: Production and in vitro antimicrobial activity evaluation against mastitis-causing microorganisms. LWT - Food Science and Technology, 2022, 153, 112470.	2.5	12
5	Antineoplastic activity of free 4-nitrochalcone and encapsulated in poly(thioether-ester) nanoparticles obtained by thiol-ene polymerization in two human leukemia cell lines (Jurkat and K562). Journal of Drug Delivery Science and Technology, 2022, 67, 102924.	1.4	1
6	Îμ-caprolactone ring-opening polymerization catalyzed by imidazolium-based ionic liquid under mild reaction conditions. Journal of Polymer Research, 2022, 29, 1.	1.2	8
7	Cellulase immobilized on kaolin as a potential approach to improve the quality of knitted fabric. Bioprocess and Biosystems Engineering, 2022, 45, 679.	1.7	7
8	Peptide-Integrated Superparamagnetic Nanoparticles for the Identification of Epitopes from SARS-CoV-2 Spike and Nucleocapsid Proteins. ACS Applied Nano Materials, 2022, 5, 642-653.	2.4	6
9	Green synthesis of silver nanoparticles using <i>llex paraguariensis</i> extracts: antimicrobial activity and acetilcolinesterase modulation in rat brain tissue. Green Chemistry Letters and Reviews, 2022, 15, 128-138.	2.1	11
10	Recent advances and challenges on enzymatic synthesis of biobased polyesters via polycondensation. European Polymer Journal, 2022, 169, 111132.	2.6	14
11	Biopolymer-based nanocarriers for sustained release of agrochemicals: A review on materials and social science perspectives for a sustainable future of agri- and horticulture. Advances in Colloid and Interface Science, 2022, 303, 102645.	7.0	36
12	Nanomedicine in leishmaniasis: A promising tool for diagnosis, treatment and prevention of disease - An update overview. European Journal of Pharmacology, 2022, 923, 174934.	1.7	9
13	Photobiomodulation associated with lipid nanoparticles and hyaluronic acid accelerate the healing of excisional wounds. Journal of Biomaterials Applications, 2022, 37, 668-682.	1.2	7
14	Copolymerization of limonene oxide and cyclic anhydrides catalyzed by ionic liquid BMI·Fe2Cl7, nanoparticles preparation, crosslinking, and cytotoxicity studies. Journal of Polymer Research, 2022, 29, .	1.2	1
15	<i>In vitro</i> cytotoxicity and hyperthermia studies of superparamagnetic poly(urea-urethane) nanoparticles obtained by miniemulsion polymerization in human erythrocytes and NIH3T3 and HeLa cells. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 476-485.	1.8	4
16	Co-encapsulation of sodium diethyldithiocarbamate (DETC) and zinc phthalocyanine (ZnPc) in liposomes promotes increases phototoxic activity against (MDA-MB 231) human breast cancer cells. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111434.	2.5	21
17	In vitro synergic activity of diethyldithiocarbamate and 4-nitrochalcone loaded in beeswax nanoparticles against melanoma (B16F10) cells. Materials Science and Engineering C, 2021, 120, 111651.	3.8	7
18	Superparamagnetic biobased poly(thioetherâ€ester) via thiolâ€ene polymerization in miniemulsion for hyperthermia. Journal of Applied Polymer Science, 2021, 138, 49741.	1.3	7

#	Article	IF	CITATIONS
19	Polypyrrole production through chemical polymerization using anionic and cationic dopants: The influence of synthesis conditions and reaction kinetics. Materials Today Communications, 2021, 26, 101740.	0.9	3
20	Cationic polymerization of styrene using iron-containing ionic liquid catalysts in an aqueous dispersed medium. Polimeros, 2021, 31, .	0.2	3
21	Covalently Bonded <i>N</i> -Acetylcysteine-polyester Loaded in PCL Scaffolds for Enhanced Interactions with Fibroblasts. ACS Applied Bio Materials, 2021, 4, 1552-1562.	2.3	12
22	Immobilization of endoglucanase on kaolin by adsorption and covalent bonding. Bioprocess and Biosystems Engineering, 2021, 44, 1627-1637.	1.7	5
23	Active cellulose acetate arvacrol films: Antibacterial, physical and thermal properties. Packaging Technology and Science, 2021, 34, 463-474.	1.3	13
24	In Vitro Degradation and Cytotoxicity Response of Biobased Nanoparticles Prepared by Thiol-ene Polymerization in Miniemulsion. Journal of Polymers and the Environment, 2021, 29, 3668-3678.	2.4	10
25	Rigid Polyurethane Foam Obtained from Enzymatic Glycerolysis: Evaluation of the Influence of Lipase on Biopolyol Composition and Polymer Characteristics. Journal of Polymers and the Environment, 2021, 29, 3900.	2.4	5
26	Flexible polyurethane foams produced from industrial residues and castor oil. Industrial Crops and Products, 2021, 164, 113377.	2.5	25
27	Antibacterial Activity of Low-Density Polyethylene and Low-Density Polyethylene-co-maleic Anhydride Films Incorporated with ZnO Nanoparticles. Food and Bioprocess Technology, 2021, 14, 1872-1884.	2.6	8
28	Temporary tensile strength for cotton yarn via polymeric coating and crosslinking. Progress in Organic Coatings, 2021, 159, 106397.	1.9	2
29	Cellulose nanocarriers via miniemulsion allow Pathogen-Specific agrochemical delivery. Journal of Colloid and Interface Science, 2021, 601, 678-688.	5.0	14
30	Bovine Serum Albumin Conjugation in Superparamagnetic/Poly(methyl methacrylate) Nanoparticles as an Alternative for Magnetic Enzyme-Linked Immunosorbent Assays. Journal of Nanoscience and Nanotechnology, 2021, 21, 5493-5498.	0.9	2
31	<i>In vitro</i> phototoxicity of zinc phthalocyanine (ZnPc) loaded in liposomes against human breast cancer cells. Journal of Porphyrins and Phthalocyanines, 2021, 25, 153-161.	0.4	2
32	Evaluation of the in vivo acute toxicity of poly(thioetherâ€ester) and superparamagnetic poly(thioetherâ€ester) nanoparticles obtained by thiolâ€ene miniemulsion polymerization. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, , .	1.6	2
33	On the Role of Metal-Containing Imidazolium-Based Ionic Liquid Catalysts in the Formation of Tailored Polystyrene. Industrial & Engineering Chemistry Research, 2020, 59, 21685-21699.	1.8	3
34	Reactivity Ratios Estimation of the Freeâ€Radical Polymerization of Itaconic Acid and N â€Vinylâ€2â€Pyrrolidone by the Errorâ€inâ€Variables Methodology. Macromolecular Reaction Engineering, 2020, 14, 2000026.	0.9	2
35	4-nitrochalcone exerts leishmanicidal effect on L. amazonensis promastigotes and intracellular amastigotes, and the 4-nitrochalcone encapsulation in beeswax copaiba oil nanoparticles reduces macrophages cytotoxicity. European Journal of Pharmacology, 2020, 884, 173392.	1.7	16
36	Encapsulation of Magnetic Nanoparticles and CopaÃba Oil in Poly(methyl methacrylate) Nanoparticles via Miniemulsion Polymerization for Biomedical Application. Macromolecular Symposia, 2020, 394, 2000112.	0.4	5

#	Article	IF	CITATIONS
37	Comparative cytotoxic effect of citrate-capped gold nanoparticles with different sizes on noncancerous and cancerous cell lines. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	32
38	Elucidating the choice for a precise matrix for laccase immobilization: A review. Chemical Engineering Journal, 2020, 397, 125506.	6.6	108
39	Bio-Based Lignin Nanocarriers Loaded with Fungicides as a Versatile Platform for Drug Delivery in Plants. Biomacromolecules, 2020, 21, 2755-2763.	2.6	82
40	Diethyldithiocarbamate encapsulation reduces toxicity and promotes leishmanicidal effect through apoptosis-like mechanism in promastigote and ROS production by macrophage. Journal of Drug Targeting, 2020, 28, 1110-1123.	2.1	7
41	Antitumor activity associated with hyperthermia and 4-nitrochalcone loaded in superparamagnetic poly(thioether-ester) nanoparticles. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 1895-1911.	1.9	5
42	Immobilization of lipase Eversa Transform 2.0 on poly(urea–urethane) nanoparticles obtained using a biopolyol from enzymatic glycerolysis. Bioprocess and Biosystems Engineering, 2020, 43, 1279-1286.	1.7	15
43	Controlling the biodegradation rates of poly(globalide-co-ε-caprolactone) copolymers by post polymerization modification. Polymer Degradation and Stability, 2020, 179, 109287.	2.7	11
44	ZnO and quercetin encapsulated nanoparticles for sun protection obtained by miniemulsion polymerization using alternative co-stabilizers. Materials Research Express, 2020, 7, 015096.	0.8	8
45	Polyesters with main and side chain phosphoesters as structural motives for biocompatible electrospun fibres. Polymer Chemistry, 2020, 11, 2157-2165.	1.9	11
46	Enzymatic synthesis of benzyl benzoate using different acyl donors: Comparison of solvent-free reaction techniques. Process Biochemistry, 2020, 92, 261-268.	1.8	11
47	Bovine serum albumin conjugation on poly(methyl methacrylate) nanoparticles for targeted drug delivery applications. Journal of Drug Delivery Science and Technology, 2020, 56, 101490.	1.4	7
48	Thermal performance of nanoencapsulated phase change material in high molecular weight polystyrene. Polimeros, 2020, 30, .	0.2	5
49	Production of clove oil nanoemulsion with rapid and enhanced antimicrobial activity against gramâ€positive and gramâ€negative bacteria. Journal of Food Process Engineering, 2019, 42, e13209.	1.5	26
50	Epoxidation of (<i>R</i>)-(+)-Limonene to 1,2-Limonene Oxide Mediated by Low-Cost Immobilized <i>Candida antarctica</i> Lipase Fraction B. Industrial & Engineering Chemistry Research, 2019, 58, 13918-13925.	1.8	18
51	Benzyl propionate synthesis by fed-batch esterification using commercial immobilized and lyophilized Cal B lipase. Bioprocess and Biosystems Engineering, 2019, 42, 1625-1634.	1.7	9
52	Biobased Ester 2-(10-Undecenoyloxy)ethyl Methacrylate as an Asymmetrical Diene Monomer in Thiol–Ene Polymerization. Industrial & Engineering Chemistry Research, 2019, 58, 21044-21055.	1.8	6
53	Preparation and characterization of 4-nitrochalcone-folic acid-poly(methyl methacrylate) nanocapsules and cytotoxic activity on HeLa and NIH3T3 cells. Journal of Drug Delivery Science and Technology, 2019, 54, 101300.	1.4	8
54	Covalently Binding of Bovine Serum Albumin to Unsaturated Poly(Globalideâ€Coâ€Îµâ€Caprolactone) Nanoparticles by Thiolâ€Ene Reactions. Macromolecular Bioscience, 2019, 19, e1900145.	2.1	19

#	Article	IF	CITATIONS
55	Crosslinking of Electrospun Fibres from Unsaturated Polyesters by Bis-Triazolinediones (TAD). Polymers, 2019, 11, 1808.	2.0	7
56	Encapsulation of clove oil in nanostructured lipid carriers from natural waxes: Preparation, characterization and in vitro evaluation of the cholinesterase enzymes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583, 123879.	2.3	28
57	Enzymatic Synthesis of a Diene Ester Monomer Derived from Renewable Resource. Applied Biochemistry and Biotechnology, 2019, 189, 745-759.	1.4	2
58	Experimental Phase Equilibrium Data for Rotenone in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data, 2019, 64, 2357-2362.	1.0	4
59	Experimental Data and Thermodynamics Modeling (PC-SAFT EoS) of the {CO ₂ + Acetone + Pluronic F-127} System at High Pressures. Journal of Chemical & Engineering Data, 2019, 64, 2186-2192.	1.0	11
60	Functionalized kaolin as support for endoglucanase immobilization. Bioprocess and Biosystems Engineering, 2019, 42, 1165-1173.	1.7	15
61	Diethyldithiocarbamate loaded in beeswax-copaiba oil nanoparticles obtained by solventless double emulsion technique promote promastigote death in vitro. Colloids and Surfaces B: Biointerfaces, 2019, 176, 507-512.	2.5	34
62	Benzyl butyrate esterification mediated by immobilized lipases: Evaluation of batch and fed-batch reactors to overcome lipase-acid deactivation. Process Biochemistry, 2019, 78, 50-57.	1.8	24
63	Increased <i>in vitro</i> leishmanicidal activity of octyl gallate loaded poly(methyl methacrylate) nanoparticles. Pharmaceutical Development and Technology, 2019, 24, 593-599.	1.1	11
64	Synthesis of a green polyurethane foam from a biopolyol obtained by enzymatic glycerolysis and its use for immobilization of lipase NS-40116. Bioprocess and Biosystems Engineering, 2019, 42, 213-222.	1.7	22
65	Simultaneous encapsulation of zinc oxide and octocrylene in poly (methyl methacrylate-co-styrene) nanoparticles obtained by miniemulsion polymerization for use in sunscreen formulations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 561, 39-46.	2.3	28
66	Encapsulation of geranyl cinnamate in polycaprolactone nanoparticles. Materials Science and Engineering C, 2019, 97, 198-207.	3.8	38
67	High Molecular Weight Polystyrene Obtained by Cationic Emulsion Polymerization Catalyzed by Imidazoliumâ€Based Ionic Liquid. Macromolecular Reaction Engineering, 2019, 13, 1800061.	0.9	10
68	N-acetylcysteine side-chain functionalization of poly(globalide-co-Îμ-caprolactone) through thiol-ene reaction. Materials Science and Engineering C, 2019, 94, 477-483.	3.8	18
69	pH-responsive physically and chemically cross-linked glutamic-acid-based hydrogels and nanogels. European Polymer Journal, 2018, 101, 341-349.	2.6	35
70	Incorporation of Magnetic Nanoparticles in Poly(Methyl Methacrylate) Nanocapsules. Macromolecular Chemistry and Physics, 2018, 219, 1700424.	1.1	4
71	Biocatalysis of aromatic benzyl-propionate ester by different immobilized lipases. Bioprocess and Biosystems Engineering, 2018, 41, 585-591.	1.7	26
72	Cationic miniemulsion polymerization of styrene mediated by imidazolium based ionic liquid. European Polymer Journal, 2018, 104, 51-56.	2.6	18

#	Article	IF	CITATIONS
73	Polyester nanoparticles from macrolactones via miniemulsion enzymatic ring-opening polymerization. Colloid and Polymer Science, 2018, 296, 861-869.	1.0	12
74	Biocompatible Polymeric Nanoparticles From Castor Oil Derivatives via Thiolâ€Ene Miniemulsion Polymerization. European Journal of Lipid Science and Technology, 2018, 120, 1700212.	1.0	30
75	Polyesters from Macrolactones Using Commercial Lipase NS 88011 and Novozym 435 as Biocatalysts. Applied Biochemistry and Biotechnology, 2018, 184, 659-672.	1.4	26
76	Polyurethane Foams Based on Biopolyols from Castor Oil and Glycerol. Journal of Polymers and the Environment, 2018, 26, 2467-2475.	2.4	20
77	DEVELOPMENT OF ANTIOXIDANT POLY(THIOETHER-ESTER) NANOPARTICLES. Brazilian Journal of Chemical Engineering, 2018, 35, 691-698.	0.7	5
78	Evaluation of <i>in vitro</i> cytotoxicity of superparamagnetic poly(thioether-ester) nanoparticles on erythrocytes, non-tumor (NIH3T3), tumor (HeLa) cells and hyperthermia studies. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 1935-1948.	1.9	15
79	Poly(urea-urethane) nanoparticles using mono- and diacylglycerol from glycerolysis of castor oil as biopolyol and stabilizer. European Polymer Journal, 2018, 108, 529-535.	2.6	11
80	CELLULASE IMMOBILIZATION ON POLY (METHYL METHACRYLATE) NANOPARTICLES BY MINIEMULSION POLYMERIZATION. Brazilian Journal of Chemical Engineering, 2018, 35, 649-658.	0.7	11
81	Use of encapsulated natural compounds as antimicrobial additives in food packaging: A brief review. Trends in Food Science and Technology, 2018, 81, 51-60.	7.8	143
82	Enzymatically catalyzed degradation of poly (thioether-ester) nanoparticles. Polymer Degradation and Stability, 2018, 156, 211-217.	2.7	22
83	Synthesis of a biobased monomer derived from castor oil and copolymerization in aqueous medium. Chemical Engineering Research and Design, 2018, 137, 213-220.	2.7	15
84	Ultrasound assisted miniemulsion polymerization to prepare poly(urea-urethane) nanoparticles. Polimeros, 2018, 28, 155-160.	0.2	4
85	Evaluation of the <i>in vivo</i> acute antiinflammatory response of curcumin-loaded nanoparticles. Food and Function, 2018, 9, 440-449.	2.1	42
86	Synthesis of geranyl cinnamate by lipase atalyzed reaction and its evaluation as an antimicrobial agent. Journal of Chemical Technology and Biotechnology, 2017, 92, 115-121.	1.6	22
87	Thiol-ene polymerisation: A promising technique to obtain novel biomaterials. European Polymer Journal, 2017, 86, 200-215.	2.6	104
88	Enzymatic ring opening polymerization of ï‰â€Pentadecalactone in different solvents in a variableâ€volume view reactor. Journal of Polymer Science Part A, 2017, 55, 1219-1227.	2.5	17
89	Evaluation of the etching and chrome plating on the ABS, PVC, and PVC/ABS blends surface. Journal of Applied Polymer Science, 2017, 134, .	1.3	9
90	In Vitro Biocompatibility and Macrophage Uptake Assays of Poly(Urea-Urethane) Nanoparticles Obtained by Miniemulsion Polymerization. Journal of Nanoscience and Nanotechnology, 2017, 17, 4955-4960.	0.9	6

#	Article	IF	CITATIONS
91	Analytical validation of an ultraviolet–visible procedure for determining lutein concentration and application to lutein-loaded nanoparticles. Food Chemistry, 2017, 230, 336-342.	4.2	36
92	Mathematical modeling of molecular weight distribution in miniemulsion polymerization with oilâ€soluble initiator. AICHE Journal, 2017, 63, 2128-2140.	1.8	8
93	Cellulase immobilization on magnetic nanoparticles encapsulated in polymer nanospheres. Bioprocess and Biosystems Engineering, 2017, 40, 511-518.	1.7	48
94	A review on enzymatic synthesis of aromatic esters used as flavor ingredients for food, cosmetics and pharmaceuticals industries. Trends in Food Science and Technology, 2017, 69, 95-105.	7.8	174
95	Thiol-ene miniemulsion polymerization of a biobased monomer for biomedical applications. Colloids and Surfaces B: Biointerfaces, 2017, 159, 509-517.	2.5	39
96	Monomer-in-water miniemulsions by membrane emulsification. Chemical Engineering and Processing: Process Intensification, 2017, 120, 251-257.	1.8	6
97	PLLA/PMMA blend in polymer nanoparticles: influence of processing methods. Colloid and Polymer Science, 2017, 295, 1621-1633.	1.0	7
98	Poly(thioether-ester) nanoparticles entrapping clove oil for antioxidant activity improvement. Journal of Polymer Research, 2017, 24, 1.	1.2	14
99	Enzymatic ring opening copolymerization of globalide and ε-caprolactone under supercritical conditions. Journal of Supercritical Fluids, 2017, 128, 404-411.	1.6	20
100	Enzymatic ring opening polymerization of ω-pentadecalactone using supercritical carbon dioxide. Journal of Supercritical Fluids, 2017, 119, 221-228.	1.6	41
101	Design of Cross-Linked Starch Nanocapsules for Enzyme-Triggered Release of Hydrophilic Compounds. Processes, 2017, 5, 25.	1.3	16
102	Method Validation for Progesterone Determination in Poly(methyl methacrylate) Nanoparticles Synthesized via Miniemulsion Polymerization. International Journal of Polymer Science, 2017, 2017, 1-11.	1.2	6
103	Synthesis and Characterization of Hybrid Ni0.5Zn0.5Fe2O4@SiO2/chitosan. Materials Research, 2017, 20, 1534-1540.	0.6	0
104	MODELING PARTICLE SIZE DISTRIBUTION IN HETEROGENEOUS POLYMERIZATION SYSTEMS USING MULTIMODAL LOGNORMAL FUNCTION. Brazilian Journal of Chemical Engineering, 2016, 33, 469-478.	0.7	4
105	Preparation of curcumin-loaded nanoparticles and determination of the antioxidant potential of curcumin after encapsulation. Polimeros, 2016, 26, 207-214.	0.2	26
106	Immobilization of Candida antarctica Lipase B on Magnetic Poly(Urea-Urethane) Nanoparticles. Applied Biochemistry and Biotechnology, 2016, 180, 558-575.	1.4	22
107	Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	14
108	ALTMET Polymerization of Amino Acid-Based Monomers Targeting Controlled Drug Release. Macromolecules, 2016, 49, 6723-6730.	2.2	11

#	Article	IF	CITATIONS
109	Decrease of methyl methacrylate miniemulsion polymerization rate with incorporation of plant oils. European Journal of Lipid Science and Technology, 2016, 118, 93-103.	1.0	10
110	Poly(3â€hydroxybutirateâ€ <i>co</i> â€3â€hydroxyvalerate)–Polystyrene Hybrid Nanoparticles via Miniemulsion Polymerization. Macromolecular Reaction Engineering, 2016, 10, 39-46.	0.9	2
111	Increased cellular uptake of lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles due to surface modification with folic acid. Journal of Materials Science: Materials in Medicine, 2016, 27, 185.	1.7	14
112	Simultaneous single-step immobilization of Candida antarctica lipase B and incorporation of magnetic nanoparticles on poly(urea-urethane) nanoparticles by interfacial miniemulsion polymerization. Journal of Molecular Catalysis B: Enzymatic, 2016, 131, 31-35.	1.8	14
113	Post-modification of preformed polymer latex. Chemical Engineering and Processing: Process Intensification, 2016, 103, 80-86.	1.8	1
114	At-Line Monitoring of Conversion in the Inverse Miniemulsion Polymerization of Acrylamide by Raman Spectroscopy. Industrial & Engineering Chemistry Research, 2016, 55, 6317-6324.	1.8	4
115	<i>In Vitro</i> Cytotoxicity of Poly(Methyl Methacrylate) Nanoparticles and Nanocapsules Obtained by Miniemulsion Polymerization for Drug Delivery Application. Journal of Nanoscience and Nanotechnology, 2016, 16, 7669-7676.	0.9	21
116	Solid lipid nanoparticles for encapsulation of hydrophilic drugs by an organic solvent free double emulsion technique. Colloids and Surfaces B: Biointerfaces, 2016, 140, 317-323.	2.5	103
117	Synthesis of ZnPc loaded poly(methyl methacrylate) nanoparticles via miniemulsion polymerization for photodynamic therapy in leukemic cells. Materials Science and Engineering C, 2016, 60, 458-466.	3.8	41
118	Kinetic Parameters of the Initiator Decomposition in Microwave and in Conventional Batch Reactors – KPS and V50 ase Studies. Macromolecular Reaction Engineering, 2015, 9, 366-373.	0.9	7
119	Poly(Urea–Urethane) Synthesis by Miniemulsion Polymerization Using Microwaves and Conventional Polymerization. Macromolecular Reaction Engineering, 2015, 9, 48-59.	0.9	7
120	Influence of the injection molding process on the mechanical properties of (PA6/GF/MMT) nanocomposite. Polymer Composites, 2015, 36, 237-244.	2.3	11
121	Tratamento quÃmico superficial e metalização de ABS, PVC e blendas de PVC/ABS. Polimeros, 2015, 25, 212-218.	0.2	2
122	Preparation of PLLA/PMMA and PLLA/PS binary blend nanoparticles by incorporation of PLLA in methyl methacrylate or styrene miniemulsion homopolymerization. Polimeros, 2015, 25, 23-28.	0.2	8
123	Characterization of progesterone loaded biodegradable blend polymeric nanoparticles. Ciencia Rural, 2015, 45, 2082-2088.	0.3	16
124	Acyclic triene metathesis (ATMET) miniemulsion polymerization of linseed oil produces polymer nanoparticles with comparable molecular weight to that of bulk reactions. European Journal of Lipid Science and Technology, 2015, 117, 235-241.	1.0	7
125	Incorporation of high oil content in polyvinyl acetate nanoparticles produced by batch miniemulsion polymerization stabilized with a polymeric stabilizer. Journal of Applied Polymer Science, 2015, 132, .	1.3	3
126	Kinetic Study of Candida antarctica Lipase B Immobilization Using Poly(Methyl Methacrylate) Nanoparticles Obtained by Miniemulsion Polymerization as Support. Applied Biochemistry and Biotechnology, 2015, 175, 2961-2971.	1.4	25

#	Article	IF	CITATIONS
107	Simultaneous encapsulation of magnetic nanoparticles and zinc phthalocyanine in poly(methyl) Tj ETQq1 1		
127	Surfaces B: Biointerfaces, 2015, 135, 357-364.	2.5	25
128	Synthesis of PEG-PCL-based polyurethane nanoparticles by miniemulsion polymerization. Colloids and Surfaces B: Biointerfaces, 2015, 135, 35-41.	2.5	20
129	Encapsulation of roasted coffee oil in biocompatible nanoparticles. LWT - Food Science and Technology, 2015, 64, 381-389.	2.5	43
130	Incorporation of superparamagnetic nanoparticles into poly(urea-urethane) nanoparticles by step growth interfacial polymerization in miniemulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 482, 596-603.	2.3	16
131	Encapsulation of magnetic nanoparticles in poly(methyl methacrylate) by miniemulsion and evaluation of hyperthermia in U87MG cells. European Polymer Journal, 2015, 68, 355-365.	2.6	55
132	Synthesis and modification of polyurethane for immobilization of Thermomyces lanuginosus (TLL) lipase for ethanolysis of fish oil in solvent free system. Journal of Molecular Catalysis B: Enzymatic, 2015, 122, 163-169.	1.8	25
133	Validation of an Ultraviolet–visible (UV–Vis) technique for the quantitative determination of curcumin in poly(l-lactic acid) nanoparticles. Food Chemistry, 2015, 172, 99-104.	4.2	86
134	Acrylamide inverse miniemulsion polymerization: in situ, real-time monitoring using nir spectroscopy. Brazilian Journal of Chemical Engineering, 2014, 31, 925-933.	0.7	10
135	Robust Calorimetric Estimation of Semi-Continuous and Batch Emulsion Polymerization Systems with Covariance Estimation. Macromolecular Reaction Engineering, 2014, 8, 456-466.	0.9	8
136	SBâ€S Coreâ€Shell Particles in Semicontinuous Seeded Emulsion Polymerization and their use as Impact Modifier. Macromolecular Symposia, 2014, 344, 28-32.	0.4	1
137	Synthesis and Characterization of Poly(Methyl Methacrylate) PMMA and Evaluation of Cytotoxicity for Biomedical Application. Macromolecular Symposia, 2014, 343, 65-69.	0.4	33
138	Synthesis of Core‧hell Particles with Low Molecular Weight Alkanes by Miniemulsion Polymerization. Macromolecular Symposia, 2014, 343, 31-38.	0.4	3
139	ADMET reactions in miniemulsion. Journal of Polymer Science Part A, 2014, 52, 1300-1305.	2.5	18
140	Degradable polyurethane nanoparticles containing vegetable oils. European Journal of Lipid Science and Technology, 2014, 116, 24-30.	1.0	22
141	Emulsion copolymerization of styrene and acrylated methyl oleate. European Journal of Lipid Science and Technology, 2014, 116, 37-43.	1.0	24
142	Immobilization of Candida antarctica lipase B on PEGylated poly(urea-urethane) nanoparticles by step miniemulsion polymerization. Journal of Molecular Catalysis B: Enzymatic, 2014, 109, 116-121.	1.8	27
143	Polimerização do L-lactÃdeo na Presença de Nitrogênio Gasoso. Semina: Ciências Exatas E Tecnológi 2014, 35, 199.	cas, 0.3	0
144	Ionic liquid as surfactant in microwaveâ€assisted emulsion polymerization. Journal of Applied Polymer Science, 2013, 127, 448-455.	1.3	16

#	Article	IF	CITATIONS
145	Magnetic Polymer/Nickel Hybrid Nanoparticles Via Miniemulsion Polymerization. Macromolecular Chemistry and Physics, 2013, 214, 2213-2222.	1.1	31
146	Calorimetric Estimation Employing the Unscented Kalman Filter for a Batch Emulsion Polymerization Reactor. Macromolecular Reaction Engineering, 2013, 7, 24-35.	0.9	16
147	Phase behavior of carbon dioxide + medroxyprogesterone acetate system at high pressures. Fluid Phase Equilibria, 2013, 349, 1-11.	1.4	27
148	Encapsulation of magnetic nickel nanoparticles via inverse miniemulsion polymerization. Journal of Applied Polymer Science, 2013, 129, 1426-1433.	1.3	27
149	Hydrolysis of poly(hydroxybutyrateâ€ <i>co</i> â€hydroxyvalerate) nanoparticles. Journal of Applied Polymer Science, 2013, 128, 3093-3098.	1.3	15
150	Monitoring Pyrrol Polymerization Using Onâ€Line Conductivity Measurements and Neural Networks. Macromolecular Symposia, 2013, 333, 113-121.	0.4	6
151	Encapsulation of Jojoba and Andiroba Oils by Miniemulsion Polymerization. Effect on Molar Mass Distribution. Macromolecular Symposia, 2013, 324, 114-123.	0.4	24
152	Compartmentalization Effects on Miniemulsion Polymerization with Oilâ€ s oluble Initiator. Macromolecular Reaction Engineering, 2013, 7, 221-231.	0.9	30
153	Expansion of core–shell PS/PMMA particles. Journal of Applied Polymer Science, 2013, 130, 4521-4527.	1.3	0
154	Poly(3-hydroxybutyrate-co-3- hydroxyvalerate) nanoparticles prepared by a miniemulsion/solvent evaporation technique: effect of phbv molar mass and concentration. Brazilian Journal of Chemical Engineering, 2013, 30, 369-377.	0.7	23
155	Preparation of poly(urethane-urea) nanoparticles containing açaÃ-oil by miniemulsion polymerization. Polimeros, 2013, 23, 451-455.	0.2	24
156	Comparison of bismuth trioxide and antimony trioxide as synergists with decabromodiphenyl ether in flame retardancy of high-impact polystyrene. Journal of Fire Sciences, 2012, 30, 566-574.	0.9	5
157	Styrene Miniemulsion Polymerization: Incorporation of Nâ€Alkanes. Macromolecular Symposia, 2012, 319, 54-63.	0.4	6
158	Influence of Semi-Batch Operations on Morphological Properties of Polystyrene Made in Suspension Polymerization. Procedia Engineering, 2012, 42, 1045-1052.	1.2	5
159	Effects of Operational Parameters on Particle Size Distributions in Methyl Methacrylate Suspension Polymerization. Industrial & amp; Engineering Chemistry Research, 2011, 50, 9116-9122.	1.8	15
160	Microwave Effects Due to Anionic or Cationic Initiators in Emulsion Polymerization Reactions. Macromolecular Symposia, 2011, 302, 161-168.	0.4	4
161	Crosslinking of poly(N -vinyl-2-pyrrolidone) in the coating of cotton yarn. Polymer Engineering and Science, 2011, 51, 445-453.	1.5	11
162	BSA Adsorption on Differently Charged Polystyrene Nanoparticles using Isothermal Titration Calorimetry and the Influence on Cellular Uptake. Macromolecular Bioscience, 2011, 11, 628-638.	2.1	135

#	Article	IF	CITATIONS
163	Coating of cotton yarn with poly(vinyl alcohol) and poly(<i>N</i> â€vinylâ€2â€pyrrolidone) crosslinked via ultraviolet radiation. Journal of Applied Polymer Science, 2011, 119, 2560-2567.	1.3	5
164	Incorporation of PMMA and PS in Styrene and Methyl methacrylate Miniemulsion Homopolymerization. Macromolecular Symposia, 2011, 299-300, 41-47.	0.4	4
165	Inâ€Line Monitoring of Emulsion Polymerization Reactions Combining Heat Flow and Heat Balance Calorimetry. Macromolecular Reaction Engineering, 2010, 4, 682-690.	0.9	11
166	Kinetics of MMA and VAc Miniemulsion Polymerizations Using Miglyol and Castor Oil as Hydrophobe and Liquid Core. Chemical Engineering and Technology, 2010, 33, 1877-1887.	0.9	23
167	Rapid decomposition of a cationic azoâ€initiator under microwave irradiation. Journal of Applied Polymer Science, 2010, 118, 1421-1429.	1.3	4
168	Swelling of organoclays in styrene. Effect on flammability in polystyrene nanocomposites. EXPRESS Polymer Letters, 2010, 4, 500-508.	1.1	12
169	Nanoencapsulation of Quercetin via Miniemulsion Polymerization. Journal of Biomedical Nanotechnology, 2010, 6, 181-186.	0.5	34
170	Nanocapsules by Miniemulsion Polymerization with Biodegradable Surfactant and Hydrophobe. Macromolecular Chemistry and Physics, 2009, 210, 747-751.	1.1	28
171	Secondary particle formation in seeded suspension polymerization. Polymer, 2009, 50, 375-381.	1.8	25
172	Kinetic advantages of using microwaves in the emulsion polymerization of MMA. Materials Science and Engineering C, 2009, 29, 415-419.	3.8	30
173	Foaming of poly(methyl methacrylate) particles. Materials Science and Engineering C, 2009, 29, 479-484.	3.8	9
174	Polymeric nanocapsules via miniemulsion polymerization using redox initiation. Materials Science and Engineering C, 2009, 29, 514-518.	3.8	29
175	Microwave-assisted rapid decomposition of persulfate. European Polymer Journal, 2009, 45, 2011-2016.	2.6	48
176	Application of a new startup procedure using distributed heating along distillation column. Chemical Engineering and Processing: Process Intensification, 2009, 48, 1487-1494.	1.8	13
177	Synthesis of PS/PMMA Coreâ~Shell Structured Particles by Seeded Suspension Polymerization. Macromolecules, 2008, 41, 6960-6964.	2.2	45
178	Effect of Cooling Fluid Flow Rate on the Estimation of Conversion by Calorimetry in a Lab-Scale Reactor. Macromolecular Symposia, 2008, 271, 38-47.	0.4	9
179	Coagulation of Carboxylic Acidâ€Functionalized Latexes. Macromolecular Symposia, 2008, 271, 99-106.	0.4	3
180	Comparison of techniques for the determination of conversion during suspension polymerization reactions. Brazilian Journal of Chemical Engineering, 2008, 25, 399-407.	0.7	21

#	Article	IF	CITATIONS
181	Spectroscopic on-line monitoring of reactions in dispersed medium: Chemometric challenges. Analytica Chimica Acta, 2007, 595, 257-265.	2.6	49
182	Effect of Foster Swelling Degree in Polystyrene/Clay Nanocomposites Obtained by In Situ Incorporation. Macromolecular Symposia, 2006, 245-246, 337-342.	0.4	5
183	Application of Calorimetry Technique to Estimate Conversion of Polymerization Reactions in a Standard Lab-Scale Reactor. Macromolecular Symposia, 2006, 245-246, 390-397.	0.4	3
184	Investigation of Stabilization and Kinetics in the Semi-Continuous Emulsion Copolymerization of Vinyl Acetate and Butyl Acrylate using Carboxylic Monomers. Macromolecular Symposia, 2006, 245-246, 61-67.	0.4	5
185	Modeling the nucleation stage during batch emulsion polymerization. AICHE Journal, 2005, 51, 2521-2533.	1.8	11
186	Monitoring emulsion homopolymerization reactions using FT-Raman spectroscopy. Brazilian Journal of Chemical Engineering, 2005, 22, 61-74.	0.7	23
187	Effect of Initiator on the Incorporation of Graphite into Polymer Matrix During Suspension Polymerization. Macromolecular Symposia, 2005, 229, 72-80.	0.4	4
188	Development of calibration models for estimation of monomer concentration by Raman spectroscopy during emulsion polymerization: Facing the medium heterogeneity. Journal of Applied Polymer Science, 2004, 93, 1136-1150.	1.3	26
189	In Situ Near-Infrared Spectroscopy for Simultaneous Monitoring of Multiple Process Variables in Emulsion Copolymerization. Industrial & Engineering Chemistry Research, 2004, 43, 7243-7250.	1.8	38
190	Online Monitoring of Suspension Polymerization Reactions Using Raman Spectroscopy. Industrial & Engineering Chemistry Research, 2004, 43, 7282-7289.	1.8	39
191	Comparing near infrared and Raman spectroscopy for on-line monitoring of emulsion copolymerization reactions. Macromolecular Symposia, 2004, 206, 165-178.	0.4	28
192	Butyl acrylate and vinyl acetate semicontinuous emulsion copolymerizations: study of stabilization performance. Macromolecular Symposia, 2004, 206, 179-190.	0.4	9
193	Correlation between Polymer Particle Size and in-situ NIR Spectra. Macromolecular Rapid Communications, 2003, 24, 620-624.	2.0	29
194	Evidences of correlation between polymer particle size and Raman scattering. Polymer, 2003, 44, 6123-6128.	1.8	37
195	Optimization of semicontinuous emulsion polymerization reactions by IDP procedure with variable time intervals. Computers and Chemical Engineering, 2003, 27, 1345-1360.	2.0	20
196	Techniques for reducing residual monomer content in polymers: A review. Polymer Engineering and Science, 2002, 42, 1442-1468.	1.5	125
197	USING MULTIPLICITY TO IMPROVE REACTOR PERFORMANCE AND PRODUCT QUALITY IN EMULSION POLYMERIZATION IN CONTINUOUS LOOP REACTORS. Polymer-Plastics Technology and Engineering, 2001, 9, 1-17.	0.7	2
198	Modeling molecular weight distribution in emulsion polymerization reactions with transfer to polymer. Journal of Polymer Science Part A, 2001, 39, 3513-3528.	2.5	30

#	Article	IF	CITATIONS
199	Modeling Particle Size Distribution (PSD) in Emulsion Copolymerization Reactions in a Continuous Loop Reactor. Macromolecular Theory and Simulations, 2001, 10, 769-779.	0.6	44
200	Modeling particle size distribution (PSD) in emulsion copolymerization reactions in a continuous loop reactor. Computer Aided Chemical Engineering, 2000, 8, 565-570.	0.3	3
201	Emulsion Polymerization in a Loop Reactor: Effect of the Operation Conditions. Polymer-Plastics Technology and Engineering, 1999, 7, 303-326.	0.7	25
202	INFLUÊNCIA DO TIPO DE SURFACTANTE E DO pH NA IMOBILIZAÇÃO DE CELULASE EM NANOPARTÀULAS DE PMMA VIA POLIMERIZAÇÃO EM MINIEMULSÃO. , 0, , .		0
203	CARACTERIZAÇÃO DE NANOPARTÀULAS DE POLIURETANO PARA IMOBILIZAÇÃO DE Candida antarctica LIPASE B (CalB). , 0, , .		0