
Carlos Andrés RodrÃ-guez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4331245/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Population Pharmacokinetic Models of Antituberculosis Drugs in Patients: A Systematic Critical Review. Therapeutic Drug Monitoring, 2021, 43, 108-115.	2.0	7
2	A new pharmacodynamic approach to study antibiotic combinations against enterococci in vivo: Application to ampicillin plus ceftriaxone. PLoS ONE, 2020, 15, e0243365.	2.5	6
3	Title is missing!. , 2020, 15, e0243365.		0
4	Title is missing!. , 2020, 15, e0243365.		0
5	Title is missing!. , 2020, 15, e0243365.		0
6	Title is missing!. , 2020, 15, e0243365.		0
7	Nontherapeutic equivalence of a generic product of imipenem-cilastatin is caused more by chemical instability of the active pharmaceutical ingredient (imipenem) than by its substandard amount of cilastatin. PLoS ONE, 2019, 14, e0211096.	2.5	3
8	Nonparametric Population Pharmacokinetic Modeling of Isoniazid in Colombian Patients With Tuberculosis. Therapeutic Drug Monitoring, 2019, 41, 719-725.	2.0	4
9	CIEMTO: the new drug and poison research and information center in MedellÃn, Colombia. Clinical Toxicology, 2017, 55, 684-685.	1.9	3
10	Antifungal pharmacodynamics: Latin America's perspective. Brazilian Journal of Infectious Diseases, 2017, 21, 79-87.	0.6	6
11	In vivo pharmacodynamics of piperacillin/tazobactam: implications for antimicrobial efficacy and resistance suppression with innovator and generic products. International Journal of Antimicrobial Agents, 2017, 49, 189-197.	2.5	16
12	Impact on Bacterial Resistance of Therapeutically Nonequivalent Generics: The Case of Piperacillin-Tazobactam. PLoS ONE, 2016, 11, e0155806.	2.5	11
13	Perspectives for the structure-based design of acetylcholinesterase reactivators. Journal of Molecular Graphics and Modelling, 2016, 68, 176-183.	2.4	14
14	A strain-independent method to induce progressive and lethal pneumococcal pneumonia in neutropenic mice. Journal of Biomedical Science, 2015, 22, 24.	7.0	3
15	Pharmacodynamics of nine generic products of amikacin compared with the innovator in the neutropenic mouse thigh infection model. BMC Research Notes, 2015, 8, 546.	1.4	2
16	Demonstration of Therapeutic Equivalence of Fluconazole Generic Products in the Neutropenic Mouse Model of Disseminated Candidiasis. PLoS ONE, 2015, 10, e0141872.	2.5	2
17	Relevance of various animal models of human infections to establish therapeutic equivalence of a generic product of piperacillin/tazobactam. International Journal of Antimicrobial Agents, 2015, 45, 161-167.	2.5	9
18	An Optimized Mouse Thigh Infection Model for Enterococci and Its Impact on Antimicrobial Pharmacodynamics. Antimicrobial Agents and Chemotherapy, 2015, 59, 233-238.	3.2	9

#	Article	IF	CITATIONS
19	Impact on Resistance of the Use of Therapeutically Equivalent Generics: the Case of Ciprofloxacin. Antimicrobial Agents and Chemotherapy, 2015, 59, 53-58.	3.2	14
20	About the Validation of Animal Models to Study the Pharmacodynamics of Generic Antimicrobials. Clinical Infectious Diseases, 2014, 59, 459-461.	5.8	10
21	Even Apparently Insignificant Chemical Deviations among Bioequivalent Generic Antibiotics Can Lead to Therapeutic Nonequivalence: the Case of Meropenem. Antimicrobial Agents and Chemotherapy, 2014, 58, 1005-1018.	3.2	23
22	Generic Vancomycin Enriches Resistant Subpopulations of Staphylococcus aureus after Exposure in a Neutropenic Mouse Thigh Infection Model. Antimicrobial Agents and Chemotherapy, 2012, 56, 243-247.	3.2	32
23	In vitro and in vivo comparison of the anti-staphylococcal efficacy of generic products and the innovator of oxacillin. BMC Infectious Diseases, 2010, 10, 153.	2.9	35
24	Determination of Therapeutic Equivalence of Generic Products of Gentamicin in the Neutropenic Mouse Thigh Infection Model. PLoS ONE, 2010, 5, e10744.	2.5	42
25	Generic Vancomycin Products Fail <i>In Vivo</i> despite Being Pharmaceutical Equivalents of the Innovator. Antimicrobial Agents and Chemotherapy, 2010, 54, 3271-3279.	3.2	88
26	Potential therapeutic failure of generic vancomycin in a liver transplant patient with MRSA peritonitis and bacteremia. Journal of Infection, 2009, 59, 277-280.	3.3	29
27	Application of microbiological assay to determine pharmaceutical equivalence of generic intravenous antibiotics. BMC Clinical Pharmacology, 2009, 9, 1.	2.5	73
28	Neutropenia induced in outbred mice by a simplified low-dose cyclophosphamide regimen: characterization and applicability to diverse experimental models of infectious diseases. BMC Infectious Diseases, 2006, 6, 55.	2.9	149
29	Optimization of culture conditions to obtain maximal growth of penicillin-resistant Streptococcus pneumoniae. BMC Microbiology, 2005, 5, 34.	3.3	19
30	Staphylococcus aureus resistente a vancomicina Biomedica, 2005, 25, 575.	0.7	8