
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4331234/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Faces of Fungi database: fungal names linked with morphology, phylogeny and human impacts. Fungal Diversity, 2015, 74, 3-18.	4.7	471
2	Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnology and Biotechnological Equipment, 2015, 29, 221-236.	0.5	303
3	The Genomes of the Fungal Plant Pathogens Cladosporium fulvum and Dothistroma septosporum Reveal Adaptation to Different Hosts and Lifestyles But Also Signatures of Common Ancestry. PLoS Genetics, 2012, 8, e1003088.	1.5	226
4	Colletotrichum gloeosporioides is not a common pathogen on tropical fruits. Fungal Diversity, 2010, 44, 33-43.	4.7	225
5	Horizontal gene and chromosome transfer in plant pathogenic fungi affecting host range. FEMS Microbiology Reviews, 2011, 35, 542-554.	3.9	143
6	Plant pathogen nanodiagnostic techniques: forthcoming changes?. Biotechnology and Biotechnological Equipment, 2014, 28, 775-785.	0.5	110
7	Eugenol oil nanoemulsion: antifungal activity against Fusarium oxysporum f. sp. vasinfectum and phytotoxicity on cottonseeds. Applied Nanoscience (Switzerland), 2015, 5, 255-265.	1.6	106
8	Bacillus megaterium-Mediated Synthesis of Selenium Nanoparticles and Their Antifungal Activity against Rhizoctonia solani in Faba Bean Plants. Journal of Fungi (Basel, Switzerland), 2021, 7, 195.	1.5	92
9	Colletotrichum species from Jasmine (Jasminum sambac). Fungal Diversity, 2011, 46, 171-182.	4.7	90
10	Fusarium as a Novel Fungus for the Synthesis of Nanoparticles: Mechanism and Applications. Journal of Fungi (Basel, Switzerland), 2021, 7, 139.	1.5	83
11	Pseudomonas indica-Mediated Silver Nanoparticles: Antifungal and Antioxidant Biogenic Tool for Suppressing Mucormycosis Fungi. Journal of Fungi (Basel, Switzerland), 2022, 8, 126.	1.5	78
12	Synthesis and characterization of chitosan–copper nanocomposites and their fungicidal activity against two sclerotia-forming plant pathogenic fungi. Journal of Nanostructure in Chemistry, 2017, 7, 249-258.	5.3	63
13	An Optimized Protocol for DNA Extraction from Wheat Seeds and Loop-Mediated Isothermal Ampliï¬cation (LAMP) to Detect Fusarium graminearum Contamination of Wheat Grain. International Journal of Molecular Sciences, 2011, 12, 3459-3472.	1.8	61
14	Multifunctional Silver Nanoparticles Based on Chitosan: Antibacterial, Antibiofilm, Antifungal, Antioxidant, and Wound-Healing Activities. Journal of Fungi (Basel, Switzerland), 2022, 8, 612.	1.5	59
15	Zinc-Based Nanomaterials for Diagnosis and Management of Plant Diseases: Ecological Safety and Future Prospects. Journal of Fungi (Basel, Switzerland), 2020, 6, 222.	1.5	54
16	Nanohybrid Antifungals for Control of Plant Diseases: Current Status and Future Perspectives. Journal of Fungi (Basel, Switzerland), 2021, 7, 48.	1.5	54
17	Ecofriendly nanomaterials for controlling gray mold of table grapes and maintaining postharvest quality. European Journal of Plant Pathology, 2019, 154, 377-388.	0.8	53
18	Epitypification of Colletotrichum musae, the causative agent of banana anthracnose. Mycoscience, 2011, 52, 376-382.	0.3	50

#	Article	IF	CITATIONS
19	Applications of Silver Nanoparticles in Plant Protection. Nanotechnology in the Life Sciences, 2018, , 247-265.	0.4	49
20	Antioxidant and antibacterial activities of omega-3 rich oils/curcumin nanoemulsions loaded in chitosan and alginate-based microbeads. International Journal of Biological Macromolecules, 2019, 140, 682-696.	3.6	49
21	Examination of Correlations Between Several Biochemical Components and Powdery Mildew Resistance of Flax Cultivars. Plant Pathology Journal, 2012, 28, 149-155.	0.7	43
22	An Outlook on Global Regulatory Landscape for Genome-Edited Crops. International Journal of Molecular Sciences, 2021, 22, 11753.	1.8	43
23	Trichoderma harzianum-Mediated ZnO Nanoparticles: A Green Tool for Controlling Soil-Borne Pathogens in Cotton. Journal of Fungi (Basel, Switzerland), 2021, 7, 952.	1.5	43
24	Nettle-Leaf Extract Derived ZnO/CuO Nanoparticle-Biopolymer-Based Antioxidant and Antimicrobial Nanocomposite Packaging Films and Their Impact on Extending the Post-Harvest Shelf Life of Guava Fruit. Biomolecules, 2021, 11, 224.	1.8	40
25	Nanomaterials Act as Plant Defense Mechanism. , 2017, , 253-269.		38
26	Exosome/Liposome-like Nanoparticles: New Carriers for CRISPR Genome Editing in Plants. International Journal of Molecular Sciences, 2021, 22, 7456.	1.8	37
27	Pleurotus Macrofungi-Assisted Nanoparticle Synthesis and Its Potential Applications: A Review. Journal of Fungi (Basel, Switzerland), 2020, 6, 351.	1.5	36
28	Mycotoxin-producing fungi occurring in sorghum grains from Saudi Arabia. Fungal Diversity, 2010, 44, 45-52.	4.7	29
29	Culture collections, the new herbaria for fungal pathogens. Fungal Diversity, 2010, 45, 21-32.	4.7	28
30	Taxonomy and phylogeny of Laburnicola gen. nov. and Paramassariosphaeria gen. nov. (Didymosphaeriaceae, Massarineae, Pleosporales). Fungal Biology, 2016, 120, 1354-1373.	1.1	28
31	Potential Usage of Edible Mushrooms and Their Residues to Retrieve Valuable Supplies for Industrial Applications. Journal of Fungi (Basel, Switzerland), 2021, 7, 427.	1.5	28
32	Edible alginate/chitosan-based nanocomposite microspheres as delivery vehicles of omega-3 rich oils. Carbohydrate Polymers, 2020, 239, 116201.	5.1	24
33	Functional Attributes of Myco-Synthesized Silver Nanoparticles from Endophytic Fungi: A New Implication in Biomedical Applications. Biology, 2021, 10, 473.	1.3	24
34	Isolation of high-quality DNA from cotton and its fungal pathogens. Journal of Plant Diseases and Protection, 2007, 114, 113-116.	1.6	23
35	Copper-Chitosan Nanocomposite Hydrogels Against Aflatoxigenic Aspergillus flavus from Dairy Cattle Feed. Journal of Fungi (Basel, Switzerland), 2020, 6, 112.	1.5	23
36	A new species of <i>Colletotrichum</i> from <i>Cordyline</i> <i>fruticosa</i> and <i>Eugenia javanica</i> causing anthracnose disease. Mycotaxon, 2011, 114, 247-257.	0.1	22

#	Article	IF	CITATIONS
37	Rapid and efficient extraction of genomic DNA from differentphytopathogenic fungi using DNAzol reagent. Biotechnology Letters, 2005, 27, 3-6.	1.1	21
38	Bimetallic blends and chitosan nanocomposites: novel antifungal agents against cotton seedling damping-off. European Journal of Plant Pathology, 2018, 151, 57.	0.8	21
39	Agroinfiltration Mediated Scalable Transient Gene Expression in Genome Edited Crop Plants. International Journal of Molecular Sciences, 2021, 22, 10882.	1.8	21
40	Silver/Chitosan Nanocomposites: Preparation and Characterization and Their Fungicidal Activity against Dairy Cattle Toxicosis Penicillium expansum. Journal of Fungi (Basel, Switzerland), 2020, 6, 51.	1.5	20
41	Biosorption and Bioleaching of Heavy Metals from Electronic Waste Varied with Microbial Genera. Sustainability, 2022, 14, 935.	1.6	20
42	M13-microsatellite PCR and rDNA sequence markers for identification of Trichoderma (Hypocreaceae) species in Saudi Arabian soil. Genetics and Molecular Research, 2010, 9, 2016-2024.	0.3	19
43	Trichoderma: An Eco-Friendly Source of Nanomaterials for Sustainable Agroecosystems. Journal of Fungi (Basel, Switzerland), 2022, 8, 367.	1.5	19
44	An efficient method for DNA extraction from Cladosporioid fungi. Genetics and Molecular Research, 2010, 9, 2283-2291.	0.3	18
45	First morphogenetic identification of the fungal pathogen Colletotrichum musae (Phyllachoraceae) from imported bananas in Saudi Arabia. Genetics and Molecular Research, 2010, 9, 2335-2342.	0.3	18
46	Chitosan-Urea Nanocomposite for Improved Fertilizer Applications: The Effect on the Soil Enzymatic Activities and Microflora Dynamics in N Cycle of Potatoes (Solanum tuberosum L.). Polymers, 2021, 13, 2887.	2.0	18
47	Trichogenic Silver-Based Nanoparticles for Suppression of Fungi Involved in Damping-Off of Cotton Seedlings. Microorganisms, 2022, 10, 344.	1.6	17
48	Antagonistic potential of Trichoderma spp. against Rhizoctonia solani and use of M13 microsatellite-primed PCR to evaluate the antagonist genetic variation. Journal of Plant Diseases and Protection, 2005, 112, 550-561.	1.6	16
49	Characterization of Novel Di-, Tri-, and Tetranucleotide Microsatellite Primers Suitable for Genotyping Various Plant Pathogenic Fungi with Special Emphasis on Fusaria and Mycospherella graminicola. International Journal of Molecular Sciences, 2012, 13, 2951-2964.	1.8	16
50	Nano-carbon: Plant Growth Promotion and Protection. Nanotechnology in the Life Sciences, 2018, , 155-188.	0.4	16
51	Using Multiplexed CRISPR/Cas9 for Suppression of Cotton Leaf Curl Virus. International Journal of Molecular Sciences, 2021, 22, 12543.	1.8	16
52	Nanobiotechnological strategies for toxigenic fungi and mycotoxin control. , 2017, , 337-364.		14
53	Carbon nanomaterial applications in air pollution remediation. , 2020, , 133-153.		14
54	Nanoplatforms for Plant Pathogenic Fungi Management. Fungal Genomics & Biology, 2012, 02, .	0.4	13

#	Article	IF	CITATIONS
55	Antifungal Nano-Therapy in Veterinary Medicine: Current Status and Future Prospects. Journal of Fungi (Basel, Switzerland), 2021, 7, 494.	1.5	13
56	Multifunctional hybrid nanomaterials for sustainable agri-food and ecosystems: A note from the editor. , 2020, , 1-19.		11
57	Carbon nanotubes: Plant gene delivery and genome editing. , 2020, , 279-296.		11
58	Equiseticola gen. nov. (Phaeosphaeriaceae), from Equisetum sp. in Italy. Phytotaxa, 2016, 284, 169.	0.1	10
59	Micro/nano biochar for sustainable plant health: Present status and future prospects. , 2020, , 323-357.		10
60	Frequency and diversity ofFusariumspp. colonizing roots of Egyptian cottons. Archives of Phytopathology and Plant Protection, 2006, 39, 165-177.	0.6	8
61	Molecular detection of ochratoxigenic Aspergillus species isolated from coffee beans in Saudi Arabia. Genetics and Molecular Research, 2010, 9, 2292-2299.	0.3	8
62	Differential Antimycotic and Antioxidant Potentials of Chemically Synthesized Zinc-Based Nanoparticles Derived from Different Reducing/Complexing Agents against Pathogenic Fungi of Maize Crop. Journal of Fungi (Basel, Switzerland), 2021, 7, 223.	1.5	8
63	Hydrogen peroxide detoxifying enzymes show different activity patterns in host and non-host plant interactions with Magnaporthe oryzae Triticum pathotype. Physiology and Molecular Biology of Plants, 2021, 27, 2127-2139.	1.4	8
64	Magnetic nanomaterials for purification, detection, and control of mycotoxins. , 2020, , 87-114.		7
65	Silica-based nanosystems: Their role in sustainable agriculture. , 2020, , 437-459.		7
66	Chitosan-Based Nanostructures in Plant Protection Applications. Nanotechnology in the Life Sciences, 2018, , 351-384.	0.4	6
67	Nanobiofungicides: Present concept and future perspectives in fungal control. , 2019, , 315-351.		6
68	Rice wastes for green production and sustainable nanomaterials: An overview. , 2022, , 707-728.		6
69	Differential interactions among cotton genotypes and isolates ofFusarium oxysporumf. sp.vasinfectum. Archives of Phytopathology and Plant Protection, 2009, 42, 464-473.	0.6	5
70	First Report ofRhizoctonia solaniAG-7 on Cotton in Egypt. Journal of Phytopathology, 2010, 158, 307-309.	0.5	5
71	Evaluation of a cotton germplasm collection against Fusarium wilt race 3 isolates from Egypt. Tropical Plant Pathology, 2014, 39, 95-103.	0.8	5
72	Fungi as Ecosynthesizers for Nanoparticles and Their Application in Agriculture. Fungal Biology, 2017, , 55-75.	0.3	5

#	Article	IF	CITATIONS
73	Nanomaterials and ozonation. , 2020, , 285-308.		5
74	CRISPR–Cas technology towards improvement of abiotic stress tolerance in plants. , 2021, , 755-772.		5
75	Silver-based nanomaterials for plant diseases management: Today and future perspectives. , 2021, , 495-526.		5
76	Copper Nanostructures Applications in Plant Protection. Nanotechnology in the Life Sciences, 2018, , 63-86.	0.4	4
77	An introduction to nanomycotoxicology. , 2020, , 1-7.		4
78	Hybrid inorganic-polymer nanocomposites: Synthesis, characterization, and plant-protection applications. , 2020, , 33-49.		4
79	Response of Commercial Cotton Cultivars to Fusarium solani. Plant Pathology Journal, 2007, 23, 62-69.	0.7	4
80	Hidden Fungi as Microbial and Nano-Factories for Anticancer Agents. Fungal Genomics & Biology, 2013, 03, .	0.4	3
81	Magnetic Nanoparticles in Plant Protection: Promises and Risks. Nanotechnology in the Life Sciences, 2019, , 225-246.	0.4	3
82	Mono and hybrid nanomaterials: Novel strategies to manage postharvest diseases. , 2020, , 287-317.		3
83	Carbon nanotubes: An efficient sorbent for herbicide sensing and remediation. , 2020, , 429-457.		3
84	Carbon nanomaterials (CNTs) phytotoxicity: Quo vadis?. , 2020, , 557-581.		3
85	Botrytis Gray Mold Nano- or Biocontrol: Present Status and Future Prospects. Nanotechnology in the Life Sciences, 2019, , 85-118.	0.4	3
86	Sustainable strategies for producing large-scale nanomaterials: A note from the editors. , 2022, , 1-13.		3
87	Simple and rapid protocol for the isolation of PCR-amplifiable DNA from medicinal plants. Genetics and Molecular Research, 2012, 11, 348-354.	0.3	2
88	Nanoantimicrobials Mechanism of Action. Nanotechnology in the Life Sciences, 2018, , 281-322.	0.4	2
89	The Role of Nanoemulsions as Antimicrobial Agents in Plant Protection. Nanotechnology in the Life Sciences, 2018, , 137-153.	0.4	2
90	Silver Composites of Ultradisperse Polytetrafluoroethylene and Its Fractions in Supercritical Carbon Dioxide: Synthesis and Structural Study. Polymer Science - Series B, 2020, 62, 125-136.	0.3	2

#	Article	IF	CITATIONS
91	Nanocarbon-based sensors for pesticide detection: Recent trends. , 2020, , 401-428.		2
92	Bimetallic nanoparticles as antimicrobials. Journal of Nanotechnology and Materials Science, 2016, 3, 1-2.	0.1	2
93	Polyphasic approach for detecting toxigenic Fusarium species collected from imported grain and seed commodities. Plant Pathology & Quarantine, 2016, 6, 81-99.	0.1	2
94	Zinc-Based Nanostructures in Plant Protection Applications. Nanotechnology in the Life Sciences, 2019, , 49-83.	0.4	2
95	Agri-food and environmental applications of bionanomaterials produced from agri-waste and microbes. , 2022, , 441-463.		2
96	Fruit peel waste-to-wealth: Bionanomaterials production and their applications in agroecosystems. , 2022, , 231-257.		2
97	Pathogenic and Beneficial Pythium Species in China: An Updated Review. , 2020, , 107-122.		2
98	Elicitor-Induced Metabolomics Analysis of Halodule pinifolia Suspension Culture for an Alternative Antifungal Screening Approach against Candida albicans. Journal of Fungi (Basel, Switzerland), 2022, 8, 609.	1.5	2
99	Polymer Inorganic Nanocomposites: A Sustainable Antimicrobial Agents. Fungal Biology, 2016, , 265-289.	0.3	1
100	Magnetic Nanoparticles: A Unique Gene Delivery System in Plant Science. Nanotechnology in the Life Sciences, 2019, , 95-108.	0.4	1
101	Nanoparticles and gene silencing for suppression of mycotoxins. , 2020, , 423-448.		1
102	Graphene-based nanocomposites: Synthesis, characterizations, and their agri-food applications. , 2020, , 33-57.		1
103	Micro-/nanoscale biodegradable hydrogels: Water purification, management, conservation, and agrochemical delivery. , 2021, , 201-229.		1
104	Biogenic silver nanoparticles: New trends and applications. , 2022, , 241-281.		1
105	Enzymatic synthesis of silver nanoparticles: Mechanisms and applications. , 2022, , 699-756.		1
106	Strategies for scaling up of green-synthesized nanomaterials: Challenges and future trends. , 2022, , 669-698.		1
107	Fungi Involved in Damping-off of Cotton Seedlings and Their Differential Pathogenicity on Two Cotton Cultivars. Egyptian Journal of Botany, 2021, .	0.1	1
108	Multifunctional copper-based nanocomposites in agroecosystem applications. , 2022, , 595-613.		1

#	Article	IF	CITATIONS
109	Organic and Inorganic Salts as Postharvest Alternative Control Means of Citrus. , 0, , .		Ο
110	Formation of the multifunctional metal-polymer composite with antiseptic, anesthetic and bactericidal properties by green technologies. AIP Conference Proceedings, 2018, , .	0.3	0
111	Iron-Based Nanomaterials: Effect on Soil Microbes and Soil Health. Nanotechnology in the Life Sciences, 2019, , 261-285.	0.4	0
112	Microbially Synthesized Biomagnetic Nanomaterials. Nanotechnology in the Life Sciences, 2019, , 49-75.	0.4	0
113	Polymer and lipid-based nanoparticles to deliver RNAi and CRISPR systems. , 2021, , 635-659.		0
114	Zinc-based nanostructures for sustainable applications in agroecology: A note from the editor. , 2021, , 1-10.		0
115	Inorganic smart nanoparticles: a new tool to deliver CRISPR systems into plant cells. , 2021, , 661-686.		0
116	CRISPR applications in plant bacteriology: today and future perspectives. , 2021, , 551-577.		0
117	Zinc nanomaterial applications in agroecosystems. , 2021, , 223-241.		0
118	Silver-based nanomaterials for sustainable applications in agroecology: A note from the editor. , 2021, , 1-14.		0
119	Zinc nanomaterials: Synthesis, antifungal activity, and mechanisms. , 2021, , 139-165.		0
120	The Genus Pythium: An Overview. , 2020, , 3-14.		0
121	Microbially Inspired Nanostructures for Management of Food-Borne Pathogens. , 2020, , 117-134.		0
122	The Genus Pythium: Genomics and Breeding for Resistance. , 2020, , 270-286.		0
123	Nanosynthetic and ecofriendly approaches to produce green silver nanoparticles. , 2022, , 3-19.		0
124	Chemical and green production of silver nanocomposites. , 2022, , 55-74.		0
125	Pythium Species as Biocontrol Agents. , 2020, , 360-377.		0
126	Host Plants and Specificity of the Genus Pythium. , 2020, , 162-175.		0

127 Copper-based nanomaterials: Next-generation agrochemicals: A note from the editor. , 2022, , 1-14. o	#	ARTICLE	IF	CITATIONS
	127	Copper-based nanomaterials: Next-generation agrochemicals: A note from the editor. , 2022, , 1-14.		0