## Joseph P Mizgerd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4331189/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | An Integrative Genomic Strategy Identifies sRAGE as a Causal and Protective Biomarker of Lung Function. Chest, 2022, 161, 76-84.                                                                                                 | 0.4 | 5         |
| 2  | Stimulation of a subset of natural killer TÂcells by CD103+ DC is required for GM-CSF and protection from pneumococcal infection. Cell Reports, 2022, 38, 110209.                                                                | 2.9 | 5         |
| 3  | Update on the Features and Measurements of Experimental Acute Lung Injury in Animals: An Official<br>American Thoracic Society Workshop Report. American Journal of Respiratory Cell and Molecular<br>Biology, 2022, 66, e1-e14. | 1.4 | 82        |
| 4  | Epithelial LIF signaling limits apoptosis and lung injury during bacterial pneumonia. American Journal<br>of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L550-L563.                                          | 1.3 | 5         |
| 5  | Neutrophil Extracellular Traps as an Exacerbating Factor in Bacterial Pneumonia. Infection and<br>Immunity, 2022, 90, IAI0049121.                                                                                                | 1.0 | 6         |
| 6  | Recruitment and training of alveolar macrophages after pneumococcal pneumonia. JCI Insight, 2022, 7,                                                                                                                             | 2.3 | 12        |
| 7  | SARS-CoV-2 Brain Regional Detection, Histopathology, Gene Expression, and Immunomodulatory<br>Changes in Decedents with COVID-19. Journal of Neuropathology and Experimental Neurology, 2022, 81,<br>666-695.                    | 0.9 | 22        |
| 8  | Seedy CD8+ TRM cells in aging lungs drive susceptibility to pneumonia and sequelae. Cellular and<br>Molecular Immunology, 2021, 18, 787-789.                                                                                     | 4.8 | 2         |
| 9  | Recent endemic coronavirus infection is associated with less-severe COVID-19. Journal of Clinical Investigation, 2021, 131, .                                                                                                    | 3.9 | 277       |
| 10 | Neutrophil-Derived Oncostatin M Triggers Diverse Signaling Pathways during Pneumonia. Infection and Immunity, 2021, 89, .                                                                                                        | 1.0 | 3         |
| 11 | Lung-resident memory B cells protect against bacterial pneumonia. Journal of Clinical Investigation, 2021, 131, .                                                                                                                | 3.9 | 62        |
| 12 | Understanding the Host in the Management of Pneumonia. An Official American Thoracic Society<br>Workshop Report. Annals of the American Thoracic Society, 2021, 18, 1087-1097.                                                   | 1.5 | 17        |
| 13 | Liver-Dependent Lung Remodeling during Systemic Inflammation Shapes Responses to Secondary<br>Infection. Journal of Immunology, 2021, 207, 1891-1902.                                                                            | 0.4 | 3         |
| 14 | Antigen presentation by lung epithelial cells directs CD4+ TRM cell function and regulates barrier immunity. Nature Communications, 2021, 12, 5834.                                                                              | 5.8 | 58        |
| 15 | Comprehensive phenotyping of murine lung resident lymphocytes after recovery from pneumococcal pneumonia. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, , .                          | 1.1 | 2         |
| 16 | Lung CD4+ resident memory T cells remodel epithelial responses to accelerate neutrophil recruitment during pneumonia. Mucosal Immunology, 2020, 13, 334-343.                                                                     | 2.7 | 49        |
| 17 | Identifying Clinical Research Priorities in Adult Pulmonary and Critical Care. NHLBI Working Group Report. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 511-523.                                       | 2.5 | 40        |
| 18 | Unique Roles for Streptococcus pneumoniae Phosphodiesterase 2 in Cyclic di-AMP Catabolism and Macrophage Responses. Frontiers in Immunology, 2020, 11, 554.                                                                      | 2.2 | 8         |

| #  | Article                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Pneumonia recovery reprograms the alveolar macrophage pool. JCI Insight, 2020, 5, .                                                                                                                                                                          | 2.3  | 35        |
| 20 | 2-year survival among elderly hospitalised for acute respiratory infection <i>versus</i> hip fracture:<br>a useful comparison to raise awareness. European Respiratory Review, 2020, 29, 200156.                                                             | 3.0  | 3         |
| 21 | Roles of interleukin-11 during acute bacterial pneumonia. PLoS ONE, 2019, 14, e0221029.                                                                                                                                                                      | 1.1  | 18        |
| 22 | NF-κB RelA Is Required for Hepatoprotection during Pneumonia and Sepsis. Infection and Immunity, 2019,<br>87, .                                                                                                                                              | 1.0  | 6         |
| 23 | Epithelial membrane protein 2 governs transepithelial migration of neutrophils into the airspace.<br>Journal of Clinical Investigation, 2019, 130, 157-170.                                                                                                  | 3.9  | 24        |
| 24 | Riboflavin Metabolism Variation among Clinical Isolates of <i>Streptococcus pneumoniae</i> Results<br>in Differential Activation of Mucosal-associated Invariant T Cells. American Journal of Respiratory<br>Cell and Molecular Biology, 2018, 58, 767-776.  | 1.4  | 42        |
| 25 | Future Research Directions in Pneumonia. NHLBI Working Group Report. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 256-263.                                                                                                         | 2.5  | 54        |
| 26 | Inflammation and Pneumonia. Clinics in Chest Medicine, 2018, 39, 669-676.                                                                                                                                                                                    | 0.8  | 37        |
| 27 | Integrative Physiology of Pneumonia. Physiological Reviews, 2018, 98, 1417-1464.                                                                                                                                                                             | 13.1 | 154       |
| 28 | Pathogenesis of severe pneumonia. Current Opinion in Pulmonary Medicine, 2017, 23, 193-197.                                                                                                                                                                  | 1.2  | 36        |
| 29 | Valproic acid mitigates the inflammatory response and prevents acute respiratory distress syndrome<br>in a murine model of Escherichia coli pneumonia at the expense of bacterial clearance. Journal of<br>Trauma and Acute Care Surgery, 2017, 82, 758-765. | 1.1  | 17        |
| 30 | Myeloid-epithelial cross talk coordinates synthesis of the tissue-protective cytokine leukemia<br>inhibitory factor during pneumonia. American Journal of Physiology - Lung Cellular and Molecular<br>Physiology, 2017, 313, L548-L558.                      | 1.3  | 20        |
| 31 | Capacity of Pneumococci to Activate Macrophage Nuclear Factor κB: Influence on Necroptosis and Pneumonia Severity. Journal of Infectious Diseases, 2017, 216, 425-435.                                                                                       | 1.9  | 16        |
| 32 | 3′ Uridylation controls mature microRNA turnover during CD4 T-cell activation. Rna, 2017, 23, 882-891.                                                                                                                                                       | 1.6  | 47        |
| 33 | MicroRNA Signature of Cigarette Smoking and Evidence for a Putative Causal Role of MicroRNAs in<br>Smoking-Related Inflammation and Target Organ Damage. Circulation: Cardiovascular Genetics, 2017,<br>10, .                                                | 5.1  | 45        |
| 34 | Timing of valproic acid in acute lung injury: prevention is the best therapy?. Journal of Surgical<br>Research, 2017, 220, 206-212.                                                                                                                          | 0.8  | 12        |
| 35 | The RNA uridyltransferase Zcchc6 is expressed in macrophages and impacts innate immune responses.<br>PLoS ONE, 2017, 12, e0179797.                                                                                                                           | 1.1  | 12        |
| 36 | Expression of Piwi protein MIWI2 defines a distinct population of multiciliated cells. Journal of Clinical Investigation, 2017, 127, 3866-3876.                                                                                                              | 3.9  | 14        |

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Role for the Aryl Hydrocarbon Receptor and Diverse Ligands in Oral Squamous Cell Carcinoma<br>Migration and Tumorigenesis. Molecular Cancer Research, 2016, 14, 696-706.                                   | 1.5 | 67        |
| 38 | Epithelial Cell–Derived Secreted and Transmembrane 1a Signals to Activated Neutrophils during<br>Pneumococcal Pneumonia. American Journal of Respiratory Cell and Molecular Biology, 2016, 55,<br>407-418. | 1.4 | 30        |
| 39 | Activation of Hepatic STAT3 Maintains Pulmonary Defense during Endotoxemia. Infection and Immunity, 2015, 83, 4015-4027.                                                                                   | 1.0 | 19        |
| 40 | The Lung-Liver Axis: A Requirement for Maximal Innate Immunity and Hepatoprotection during Pneumonia. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 378-390.                       | 1.4 | 35        |
| 41 | Induction of STAT3-Dependent CXCL5 Expression and Neutrophil Recruitment by Oncostatin-M during<br>Pneumonia. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 479-488.               | 1.4 | 34        |
| 42 | Dynamics of Lung Defense in Pneumonia: Resistance, Resilience, and Remodeling. Annual Review of Physiology, 2015, 77, 407-430.                                                                             | 5.6 | 84        |
| 43 | Roles of Lung Epithelium in Neutrophil Recruitment during Pneumococcal Pneumonia. American<br>Journal of Respiratory Cell and Molecular Biology, 2014, 50, 253-262.                                        | 1.4 | 65        |
| 44 | Myeloid ZFP36L1 Does Not Regulate Inflammation or Host Defense in Mouse Models of Acute Bacterial<br>Infection. PLoS ONE, 2014, 9, e109072.                                                                | 1.1 | 9         |
| 45 | The Infant Nose. Introducing the Respiratory Tract to the World. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 1206-1207.                                                         | 2.5 | 3         |
| 46 | The Role of Leptin in the Development of Pulmonary Neutrophilia in Infection and Acute Lung Injury*.<br>Critical Care Medicine, 2014, 42, e143-e151.                                                       | 0.4 | 46        |
| 47 | Lentiviral Delivery of RNAi for In Vivo Lineage-Specific Modulation of Gene Expression in Mouse Lung<br>Macrophages. Molecular Therapy, 2013, 21, 825-833.                                                 | 3.7 | 69        |
| 48 | Roles of STAT3 in Protein Secretion Pathways during the Acute-Phase Response. Infection and Immunity, 2013, 81, 1644-1653.                                                                                 | 1.0 | 25        |
| 49 | IL-6 trans-signaling promotes pancreatitis-associated lung injury and lethality. Journal of Clinical<br>Investigation, 2013, 123, 1019-1031.                                                               | 3.9 | 238       |
| 50 | Direct control of hepatic glucose production by interleukin-13 in mice. Journal of Clinical Investigation, 2013, 123, 261-271.                                                                             | 3.9 | 116       |
| 51 | Transcriptional Signaling Hubs in Epithelial Cells During Pneumonia. , 2013, , 159-183.                                                                                                                    |     | 0         |
| 52 | Zcchc11 Uridylates Mature miRNAs to Enhance Neonatal IGF-1 Expression, Growth, and Survival. PLoS Genetics, 2012, 8, e1003105.                                                                             | 1.5 | 49        |
| 53 | Respiratory Infection and the Impact of Pulmonary Immunity on Lung Health and Disease. American<br>Journal of Respiratory and Critical Care Medicine, 2012, 186, 824-829.                                  | 2.5 | 87        |
| 54 | Leukemia Inhibitory Factor Signaling Is Required for Lung Protection during Pneumonia. Journal of Immunology, 2012, 188, 6300-6308.                                                                        | 0.4 | 65        |

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Type I Alveolar Epithelial Cells Mount Innate Immune Responses during Pneumococcal Pneumonia.<br>Journal of Immunology, 2012, 189, 2450-2459.                                                                        | 0.4  | 80        |
| 56 | Defining critical roles for NF‵B p65 and type I interferon in innate immunity to rhinovirus. EMBO<br>Molecular Medicine, 2012, 4, 1244-1260.                                                                         | 3.3  | 80        |
| 57 | Hepatocyte-specific mutation of both NF-κB RelA and STAT3 abrogates the acute phase response in mice.<br>Journal of Clinical Investigation, 2012, 122, 1758-1763.                                                    | 3.9  | 64        |
| 58 | NF-κB and STAT3 signaling hubs for lung innate immunity. Cell and Tissue Research, 2011, 343, 153-165.                                                                                                               | 1.5  | 62        |
| 59 | Terminal Uridyltransferase Enzyme Zcchc11 Promotes Cell Proliferation Independent of Its<br>Uridyltransferase Activity. Journal of Biological Chemistry, 2011, 286, 42381-42389.                                     | 1.6  | 19        |
| 60 | Earliest Innate Immune Responses Require Macrophage RelA during Pneumococcal Pneumonia.<br>American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 573-581.                                            | 1.4  | 50        |
| 61 | Mice Lacking Both TNF and ILâ€1 Receptors Exhibit Reduced Lung Inflammation and Delay in Onset of Death following Infection with a Highly Virulent H5N1 Virus. Journal of Infectious Diseases, 2010, 202, 1161-1170. | 1.9  | 91        |
| 62 | Mechanisms of the Hepatic Acute-Phase Response during Bacterial Pneumonia. Infection and Immunity, 2009, 77, 2417-2426.                                                                                              | 1.0  | 57        |
| 63 | Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nature Cell Biology, 2009, 11, 1157-1163.                                                                                                     | 4.6  | 272       |
| 64 | Targeted deletion of tumor suppressor PTEN augments neutrophil function and enhances host defense in neutropenia-associated pneumonia. Blood, 2009, 113, 4930-4941.                                                  | 0.6  | 49        |
| 65 | THE SYSTEMIC AND PULMONARY LPS BINDING PROTEIN RESPONSE TO INTRATRACHEAL LIPOPOLYSACCHARIDE. Shock, 2009, 31, 212-217.                                                                                               | 1.0  | 21        |
| 66 | Acute Lower Respiratory Tract Infection. New England Journal of Medicine, 2008, 358, 716-727.                                                                                                                        | 13.9 | 397       |
| 67 | Alveolar Epithelial STAT3, IL-6 Family Cytokines, and Host Defense during <i>Escherichia coli</i> Pneumonia. American Journal of Respiratory Cell and Molecular Biology, 2008, 38, 699-706.                          | 1.4  | 104       |
| 68 | Effect of obesity on pulmonary inflammation induced by acute ozone exposure: role of interleukin-6.<br>American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 294, L1013-L1020.              | 1.3  | 46        |
| 69 | Animal models of human pneumonia. American Journal of Physiology - Lung Cellular and Molecular<br>Physiology, 2008, 294, L387-L398.                                                                                  | 1.3  | 140       |
| 70 | Induction of Cytoplasmic Accumulation of p53: A Mechanism for Low Levels of Arsenic Exposure to<br>Predispose Cells for Malignant Transformation. Cancer Research, 2008, 68, 9131-9136.                              | 0.4  | 54        |
| 71 | Targeted deletion of tumor suppressor PTEN enhances neutrophil function and prevents<br>neutropeniaâ€associated pneumonia. FASEB Journal, 2008, 22, 495-495.                                                         | 0.2  | 0         |
| 72 | Functions and Regulation of NF-κB RelA during Pneumococcal Pneumonia. Journal of Immunology, 2007,<br>178, 1896-1903.                                                                                                | 0.4  | 97        |

| #  | Article                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Type I Interleukin-1 Receptor Is Required for Pulmonary Responses to Subacute Ozone Exposure in Mice.<br>American Journal of Respiratory Cell and Molecular Biology, 2007, 37, 477-484.                                                                            | 1.4 | 36        |
| 74 | Tumor suppressor PTEN is a physiologic suppressor of chemoattractant-mediated neutrophil functions. Blood, 2007, 109, 4028-4037.                                                                                                                                   | 0.6 | 106       |
| 75 | Regulation of Signal Transducer and Activator of Transcription Signaling by the Tyrosine Phosphatase<br>PTP-BL. Immunity, 2007, 26, 163-176.                                                                                                                       | 6.6 | 56        |
| 76 | Promotion of opsonization by antibodies and phagocytosis of Gram-positive bacteria by a bifunctional polyacrylamide. Biomaterials, 2006, 27, 3663-74.                                                                                                              | 5.7 | 49        |
| 77 | Lung Infection—A Public Health Priority. PLoS Medicine, 2006, 3, e76.                                                                                                                                                                                              | 3.9 | 243       |
| 78 | Roles of Interleukinâ€6 in Activation of STAT Proteins and Recruitment of Neutrophils<br>duringEscherichia coliPneumonia. Journal of Infectious Diseases, 2006, 193, 360-369.                                                                                      | 1.9 | 94        |
| 79 | Vascular endothelial growth factor is an important determinant of sepsis morbidity and mortality.<br>Journal of Experimental Medicine, 2006, 203, 1447-1458.                                                                                                       | 4.2 | 249       |
| 80 | Identification of Z11 as a novel zinc finger protein in the lungs. FASEB Journal, 2006, 20, A1443.                                                                                                                                                                 | 0.2 | 0         |
| 81 | Mac-1 mediates migration to lymph nodes. Blood, 2005, 106, 2927-2928.                                                                                                                                                                                              | 0.6 | 0         |
| 82 | CXCR2 is essential for maximal neutrophil recruitment and methacholine responsiveness after ozone exposure. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 288, L61-L67.                                                           | 1.3 | 85        |
| 83 | Lung NF-ήB Activation and Neutrophil Recruitment Require IL-1 and TNF Receptor Signaling during Pneumococcal Pneumonia. Journal of Immunology, 2005, 175, 7530-7535.                                                                                               | 0.4 | 143       |
| 84 | Oncostatin M causes eotaxin-1 release from airway smooth muscle: Synergy with IL-4 and IL-13. Journal of Allergy and Clinical Immunology, 2005, 115, 514-520.                                                                                                      | 1.5 | 47        |
| 85 | Neutrophils in Innate Immunity. Seminars in Respiratory and Critical Care Medicine, 2004, 25, 33-41.                                                                                                                                                               | 0.8 | 22        |
| 86 | Roles for early response cytokines duringEscherichia colipneumonia revealed by mice with combined<br>deficiencies of all signaling receptors for TNF and IL-1. American Journal of Physiology - Lung Cellular<br>and Molecular Physiology, 2004, 286, L1302-L1310. | 1.3 | 39        |
| 87 | NF-kappaB p50 facilitates neutrophil accumulation during LPS-induced pulmonary inflammation. BMC<br>Immunology, 2004, 5, 10.                                                                                                                                       | 0.9 | 27        |
| 88 | APC: braking neutrophils to benefit patients?. Blood, 2004, 104, 3841-3841.                                                                                                                                                                                        | 0.6 | 1         |
| 89 | Competing Benefits of Tumor Necrosis Factor-α for Bacteria and for Host Defense. American Journal of<br>Respiratory and Critical Care Medicine, 2003, 168, 1410-1411.                                                                                              | 2.5 | 6         |
| 90 | Nuclear Factor-lºB p50 Limits Inflammation and Prevents Lung Injury duringEscherichia coliPneumonia.<br>American Journal of Respiratory and Critical Care Medicine, 2003, 168, 810-817.                                                                            | 2.5 | 64        |

| #   | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Very Late Antigen-4 in CD18-Independent Neutrophil Emigration during Acute Bacterial Pneumonia in<br>Mice. American Journal of Respiratory and Critical Care Medicine, 2002, 166, 53-60.                                         | 2.5 | 42        |
| 92  | Functions of I <b>κ</b> B Proteins in Inflammatory Responses to <i>Escherichia coli</i> LPS in Mouse<br>Lungs. American Journal of Respiratory Cell and Molecular Biology, 2002, 27, 575-582.                                    | 1.4 | 37        |
| 93  | Molecular mechanisms of neutrophil recruitment elicited by bacteria in the lungs. Seminars in<br>Immunology, 2002, 14, 123-132.                                                                                                  | 2.7 | 168       |
| 94  | Exon truncation by alternative splicing of murine ICAM-1. Physiological Genomics, 2002, 12, 47-51.                                                                                                                               | 1.0 | 9         |
| 95  | Mechanisms of granulocytosis in the absence of CD18. Blood, 2001, 97, 1578-1583.                                                                                                                                                 | 0.6 | 35        |
| 96  | Targeted Mutation of TNF Receptor I Rescues the RelA-Deficient Mouse and Reveals a Critical Role for NF-I⁰B in Leukocyte Recruitment. Journal of Immunology, 2001, 167, 1592-1600.                                               | 0.4 | 243       |
| 97  | Early Response Cytokines and Innate Immunity: Essential Roles for TNF Receptor 1 and Type I IL-1<br>Receptor During <i>Escherichia coli</i> Pneumonia in Mice. Journal of Immunology, 2001, 166,<br>4042-4048.                   | 0.4 | 118       |
| 98  | Evaluation of the Substrate Specificity of Human Mast Cell Tryptase βI and Demonstration of Its<br>Importance in Bacterial Infections of the Lung. Journal of Biological Chemistry, 2001, 276, 26276-26284.                      | 1.6 | 130       |
| 99  | Roles of Tumor Necrosis Factor Receptor Signaling during MurineEscherichia coliPneumonia.<br>American Journal of Respiratory Cell and Molecular Biology, 2000, 22, 85-91.                                                        | 1.4 | 40        |
| 100 | Adhesion Molecules and Cellular Biomechanical Changes in Acute Lung Injury. Chest, 1999, 116, 37S-43S.                                                                                                                           | 0.4 | 72        |
| 101 | Effect of short-term enteral feeding with eicosapentaenoic and Î <sup>3</sup> -linolenic acids on alveolar<br>macrophage eicosanoid synthesis and bactericidal function in rats. Critical Care Medicine, 1999, 27,<br>1908-1915. | 0.4 | 68        |
| 102 | Combinatorial requirements for adhesion molecules in mediating neutrophil emigration during bacterial peritonitis in mice. Journal of Leukocyte Biology, 1998, 64, 291-297.                                                      | 1.5 | 31        |
| 103 | Neutrophil Emigration in the Skin, Lungs, and Peritoneum: Different Requirements for CD11/CD18<br>Revealed by CD18-deficient Mice. Journal of Experimental Medicine, 1997, 186, 1357-1364.                                       | 4.2 | 250       |
| 104 | Gadolinium induces macrophage apoptosis. Journal of Leukocyte Biology, 1996, 59, 189-195.                                                                                                                                        | 1.5 | 104       |
| 105 | Reactive oxygen species in the killing of Pseudomonas aeruginosa by human leukocytes. Current<br>Microbiology, 1995, 31, 124-128.                                                                                                | 1.0 | 18        |