Jinpeng Nong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4331124/publications.pdf

Version: 2024-02-01

34	798	16	28
papers	citations	h-index	g-index
35	35	35	879 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons. Optics Express, 2018, 26, 1633.	1.7	102
2	Graphene-Based Long-Period Fiber Grating Surface Plasmon Resonance Sensor for High-Sensitivity Gas Sensing. Sensors, 2017, 17, 2.	2.1	78
3	Enhanced Graphene Plasmonic Mode Energy for Highly Sensitive Molecular Fingerprint Retrieval. Laser and Photonics Reviews, 2021, 15, .	4.4	55
4	Graphene/Au-Enhanced Plastic Clad Silica Fiber Optic Surface Plasmon Resonance Sensor. Plasmonics, 2018, 13, 483-491.	1.8	53
5	Combined Visible Plasmons of Ag Nanoparticles and Infrared Plasmons of Graphene Nanoribbons for Highâ€Performance Surfaceâ€Enhanced Raman and Infrared Spectroscopies. Small, 2021, 17, .	5.2	53
6	Eco-friendly and high-performance photoelectrochemical anode based on AgInS ₂ quantum dots embedded in 3D graphene nanowalls. Journal of Materials Chemistry C, 2019, 7, 9830-9839.	2.7	48
7	Wideband tunable perfect absorption of graphene plasmons via attenuated total reflection in Otto prism configuration. Nanophotonics, 2020, 9, 645-655.	2.9	34
8	High-performance refractive index sensor based on guided-mode resonance in all-dielectric nano-silt array. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 1478-1482.	0.9	28
9	Graphene-MoS2 Hybrid Structure Enhanced Fiber Optic Surface Plasmon Resonance Sensor. Plasmonics, 2017, 12, 1205-1212.	1.8	26
10	Cavity-enhanced continuous graphene plasmonic resonator for infrared sensing. Optics Communications, 2017, 395, 147-153.	1.0	24
11	Resolved Infrared Spectroscopy of Aqueous Molecules Employing Tunable Graphene Plasmons in an Otto Prism. Analytical Chemistry, 2020, 92, 15370-15378.	3.2	23
12	Single-layer graphene-coated gold chip for enhanced SPR imaging immunoassay. Sensors and Actuators B: Chemical, 2018, 273, 1548-1555.	4.0	21
13	Narrowband Perfect Absorber Based on Dielectric-Metal Metasurface for Surface-Enhanced Infrared Sensing. Applied Sciences (Switzerland), 2020, 10, 2295.	1.3	20
14	Conformal Graphene-Decorated Nanofluidic Sensors Based on Surface Plasmons at Infrared Frequencies. Sensors, 2016, 16, 899.	2.1	19
15	Mechanism of propagating graphene plasmons excitation for tunable infrared photonic devices. Optics Express, 2018, 26, 3709.	1.7	18
16	Effective Transmission Modulation at Telecommunication Wavelengths through Continuous Metal Films Using Coupling between Borophene Plasmons and Magnetic Polaritons. Advanced Optical Materials, 2021, 9, 2001809.	3.6	18
17	Direct growth of graphene nanowalls on silica for high-performance photo-electrochemical anode. Surface and Coatings Technology, 2017, 320, 579-583.	2.2	17
18	Controllable hybridization between localized and delocalized anisotropic borophene plasmons in the near-infrared region. Optics Letters, 2021, 46, 725.	1.7	17

#	Article	IF	CITATIONS
19	Graphene-assisted multilayer structure employing hybrid surface plasmon and magnetic plasmon for surface-enhanced vibrational spectroscopy. Optics Express, 2018, 26, 16903.	1.7	15
20	Enhanced UV photoresponse employing 3D graphene nanowalls/SnO2 nanocomposite film. Surface and Coatings Technology, 2019, 359, 90-96.	2.2	14
21	Active tuning of longitudinal strong coupling between anisotropic borophene plasmons and Bloch surface waves. Optics Express, 2021, 29, 27750.	1.7	14
22	Reflection-type infrared biosensor based on surface plasmonics in graphene ribbon arrays. Chinese Optics Letters, 2015, 13, 082801-82805.	1.3	13
23	Active Modulation of Graphene Nearâ€Infrared Electroabsorption Employing Borophene Plasmons in a Wide Waveband. Advanced Optical Materials, 2022, 10, .	3.6	13
24	Mode energy of graphene plasmons and its role in determining the local field magnitudes. Optics Express, 2018, 26, 6214.	1.7	12
25	All-Semiconductor Plasmonic Resonator for Surface-Enhanced Infrared Absorption Spectroscopy. Micromachines, 2017, 8, 6.	1.4	11
26	All-Optical Cantilever-Enhanced Photoacoustic Spectroscopy in the Open Environment. International Journal of Thermophysics, 2015, 36, 1116-1122.	1.0	9
27	Coupling of Graphene Plasmonics Modes Induced by Near-Field Perturbation at Terahertz Frequencies. Plasmonics, 2016, 11, 1109-1118.	1.8	9
28	Magnetic polaritons assisted effective excitation of multi-order anisotropic borophene surface plasmons in the infrared region. Results in Physics, 2021, 29, 104780.	2.0	9
29	Data transmission with up to 100 orbital angular momentum modes via commercial multi-mode fiber and parallel neural networks. Optics Express, 2022, 30, 23149.	1.7	9
30	CdS nanowire-modified 3D graphene foam for high-performance photo-electrochemical anode. Journal of Alloys and Compounds, 2016, 688, 37-43.	2.8	8
31	An infrared biosensor based on graphene plasmonic for integrated nanofluidic analysis. , 2014, , .		4
32	Single-layer graphene-coated gold chip for electrochemical surface plasmon resonance study. Analytical and Bioanalytical Chemistry, 2019, 411, 4577-4585.	1.9	2
33	Highly stable all-in-one photoelectrochemical electrodes based on carbon nanowalls. Nanotechnology, 2020, 31, 335401.	1.3	2
34	Cavity enhanced ultra-thin aluminum plasmonic resonator for surface enhanced infrared absorption spectroscopy., 2016,,.		0