
Michael M Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4331123/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prostate cancer cell heterogeneity and plasticity: Insights from studies of genetically-engineered mouse models. Seminars in Cancer Biology, 2022, 82, 60-67.	4.3	6
2	Heterogeneity and complexity of the prostate epithelium: New findings from single-cell RNA sequencing studies. Cancer Letters, 2022, 525, 108-114.	3.2	14
3	Modeling tumor plasticity in organoid models of human cancer. Trends in Cancer, 2022, 8, 161-163.	3.8	1
4	Intraâ€epithelial nonâ€canonical Activin A signaling safeguards prostate progenitor quiescence. EMBO Reports, 2022, 23, e54049.	2.0	8
5	NKX3.1 Localization to Mitochondria Suppresses Prostate Cancer Initiation. Cancer Discovery, 2021, 11, 2316-2333.	7.7	25
6	TGM4: an immunogenic prostate-restricted antigen. , 2021, 9, e001649.		11
7	Novel Mouse Models of Bladder Cancer Identify a Prognostic Signature Associated with Risk of Disease Progression. Cancer Research, 2021, 81, 5161-5175.	0.4	7
8	HER3 Is an Actionable Target in Advanced Prostate Cancer. Cancer Research, 2021, 81, 6207-6218.	0.4	25
9	Cancer stem cells: advances in biology and clinical translation—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 142-163.	1.8	8
10	Functional redundancy of type I and type II receptors in the regulation of skeletal muscle growth by myostatin and activin A. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30907-30917.	3.3	33
11	CRISPR/Cas9-Mediated Point Mutation in <i>Nkx3.1</i> Prolongs Protein Half-Life and Reverses Effects <i>Nkx3.1</i> Allelic Loss. Cancer Research, 2020, 80, 4805-4814.	0.4	2
12	Bipotent Progenitors Do Not Require Androgen Receptor for Luminal Specification during Prostate Organogenesis. Stem Cell Reports, 2020, 15, 1026-1036.	2.3	12
13	A single-cell atlas of the mouse and human prostate reveals heterogeneity and conservation of epithelial progenitors. ELife, 2020, 9, .	2.8	69
14	The Role of Lineage Plasticity in Prostate Cancer Therapy Resistance. Clinical Cancer Research, 2019, 25, 6916-6924.	3.2	200
15	Nestin+NG2+ Cells Form a Reserve Stem Cell Population in the Mouse Prostate. Stem Cell Reports, 2019, 12, 1201-1211.	2.3	7
16	A Positive Step toward Understanding Double-Negative Metastatic Prostate Cancer. Cancer Cell, 2019, 36, 117-119.	7.7	7
17	Prostate Cancer Research at the Crossroads. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a036277.	2.9	3
18	Prostate Stem Cells and Cancer Stem Cells. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a030395.	2.9	56

#	Article	IF	CITATIONS
19	Tumor Evolution and Drug Response in Patient-Derived Organoid Models of Bladder Cancer. Cell, 2018, 173, 515-528.e17.	13.5	540
20	Lineage Plasticity in Cancer Progression and Treatment. Annual Review of Cancer Biology, 2018, 2, 271-289.	2.3	66
21	NSD2 is a conserved driver of metastatic prostate cancer progression. Nature Communications, 2018, 9, 5201.	5.8	66
22	Differential requirements of androgen receptor in luminal progenitors during prostate regeneration and tumor initiation. ELife, 2018, 7, .	2.8	26
23	Prostate organogenesis: tissue induction, hormonal regulation and cell type specification. Development (Cambridge), 2017, 144, 1382-1398.	1.2	133
24	A computational systems approach identifies synergistic specification genes that facilitate lineage conversion to prostate tissue. Nature Communications, 2017, 8, 14662.	5.8	30
25	Transdifferentiation as a Mechanism of Treatment Resistance in a Mouse Model of Castration-Resistant Prostate Cancer. Cancer Discovery, 2017, 7, 736-749.	7.7	275
26	PD38-07 GENETIC MUTATIONS IN PATIENT-DERIVED BLADDER TUMOR ORGANOIDS MIMIC PARENTAL TUMOR SAMPLES. Journal of Urology, 2016, 195, .	0.2	3
27	Basal Progenitors Contribute to Repair of the Prostate Epithelium Following Induced Luminal Anoikis. Stem Cell Reports, 2016, 6, 660-667.	2.3	56
28	Nkx3.1 controls the DNA repair response in the mouse prostate. Prostate, 2016, 76, 402-408.	1.2	13
29	<i>Atg7</i> cooperates with <i>Pten</i> loss to drive prostate cancer tumor growth. Genes and Development, 2016, 30, 399-407.	2.7	97
30	Abstract 4387: Alterations of TP53 mediate resistance to abiraterone in castration-resistant prostate cancer. , 2016, , .		0
31	Predicting Drug Response in Human Prostate Cancer from Preclinical Analysis of InÂVivo Mouse Models. Cell Reports, 2015, 12, 2060-2071.	2.9	34
32	Comparative lineage tracing reveals cellular preferences for prostate cancer initiation. Molecular and Cellular Oncology, 2015, 2, e985548.	0.3	2
33	Stem cells in genetically-engineered mouse models of prostate cancer. Endocrine-Related Cancer, 2015, 22, T199-T208.	1.6	13
34	Illuminating the Properties of Prostate Luminal Progenitors. Cell Stem Cell, 2015, 17, 644-646.	5.2	5
35	Transient Pairing of Homologous Oct4 Alleles Accompanies the Onset of Embryonic Stem Cell Differentiation. Cell Stem Cell, 2015, 16, 275-288.	5.2	44
36	The complex seeds of metastasis. Nature, 2015, 520, 298-299.	13.7	17

#	Article	IF	CITATIONS
37	ProNodal acts via FGFR3 to govern duration of Shh expression in the prechordal mesoderm. Development (Cambridge), 2015, 142, 3821-32.	1.2	10
38	Cripto-1 Ablation Disrupts Alveolar Development in the Mouse Mammary Gland through a Progesterone Receptor–Mediated Pathway. American Journal of Pathology, 2015, 185, 2907-2922.	1.9	8
39	Cell types of origin for prostate cancer. Current Opinion in Cell Biology, 2015, 37, 35-41.	2.6	41
40	Cross-Species Regulatory Network Analysis Identifies a Synergistic Interaction between FOXM1 and CENPF that Drives Prostate Cancer Malignancy. Cancer Cell, 2014, 25, 638-651.	7.7	293
41	From blastocyst to gastrula: gene regulatory networks of embryonic stem cells and early mouse embryogenesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130542.	1.8	28
42	Single luminal epithelial progenitors can generate prostate organoids in culture. Nature Cell Biology, 2014, 16, 951-961.	4.6	283
43	Identification of Causal Genetic Drivers of Human Disease through Systems-Level Analysis of Regulatory Networks. Cell, 2014, 159, 402-414.	13.5	185
44	Luminal Cells Are Favored as the Cell of Origin for Prostate Cancer. Cell Reports, 2014, 8, 1339-1346.	2.9	114
45	Abstract 2873: A molecular signature predictive of indolent prostate cancer. , 2014, , .		Ο
46	SnapShot: Prostate Cancer. Cancer Cell, 2013, 24, 400-400.e1.	7.7	18
47	Canonical Wnt signaling regulates Nkx3.1 expression and luminal epithelial differentiation during prostate organogenesis. Developmental Dynamics, 2013, 242, 1160-1171.	0.8	35
48	Lineage analysis of basal epithelial cells reveals their unexpected plasticity and supports a cell-of-origin model for prostate cancer heterogeneity. Nature Cell Biology, 2013, 15, 274-283.	4.6	261
49	Mash1 expression is induced in neuroendocrine prostate cancer upon the loss of Foxa2. Prostate, 2013, 73, 582-589.	1.2	10
50	The roots of cancer: Stem cells and the basis for tumor heterogeneity. BioEssays, 2013, 35, 253-260.	1.2	63
51	Chromoplexy: A New Category of Complex Rearrangements in the Cancer Genome. Cancer Cell, 2013, 23, 567-569.	7.7	90
52	A Molecular Signature Predictive of Indolent Prostate Cancer. Science Translational Medicine, 2013, 5, 202ra122.	5.8	114
53	<i>ETV4</i> promotes metastasis in response to activation of Pl3-kinase and Ras signaling in a mouse model of advanced prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3506-15.	3.3	113
54	Canonical Wnt signaling regulates Nkx3.1 expression and luminal epithelial differentiation during prostate organogenesis. Developmental Dynamics, 2013, 242, C1-C1.	0.8	3

#	Article	IF	CITATIONS
55	B-Raf Activation Cooperates with PTEN Loss to Drive c-Myc Expression in Advanced Prostate Cancer. Cancer Research, 2012, 72, 4765-4776.	0.4	87
56	Cripto regulates skeletal muscle regeneration and modulates satellite cell determination by antagonizing myostatin. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3231-40.	3.3	48
57	Development and Characterization of a Novel CD19CherryLuciferase (CD19CL) Transgenic Mouse for the Preclinical Study of B-Cell Lymphomas. Clinical Cancer Research, 2012, 18, 3803-3811.	3.2	9
58	Evidence for an alternate molecular progression in prostate cancer. DMM Disease Models and Mechanisms, 2012, 5, 914-20.	1.2	20
59	Dual Targeting of the Akt/mTOR Signaling Pathway Inhibits Castration-Resistant Prostate Cancer in a Genetically Engineered Mouse Model. Cancer Research, 2012, 72, 4483-4493.	0.4	79
60	Abstract LB-405: Identification of master regulators driving advanced prostate cancer and treatment response through the assembly of mouse and human prostate cancer interactomes. , 2012, , .		0
61	Revisiting the concept of cancer stem cells in prostate cancer. Oncogene, 2011, 30, 1261-1271.	2.6	100
62	Regulation of extra-embryonic endoderm stem cell differentiation by Nodal and Cripto signaling. Development (Cambridge), 2011, 138, 3885-3895.	1.2	53
63	Prostate-specific Klf6 inactivation impairs anterior prostate branching morphogenesis through increased activation of the Shh pathway Journal of Biological Chemistry, 2011, 286, 43587.	1.6	Ο
64	GENETICALLY ENGINEERED MOUSE MODELS IN PROSTATE CANCER RESEARCH. , 2011, , 219-282.		1
65	Abstract SY22-01: Interrogating gene expression programs from preclinical analyses of genetically engineered mouse models. , 2011, , .		0
66	Regulation of extra-embryonic endoderm stem cell differentiation by Nodal and Cripto signaling. Journal of Cell Science, 2011, 124, e1-e1.	1.2	1
67	Molecular genetics of prostate cancer: new prospects for old challenges. Genes and Development, 2010, 24, 1967-2000.	2.7	811
68	O35Stem cells and the origin of prostate cancer. Differentiation, 2010, 80, S16.	1.0	0
69	Functional redundancy of EGF-CFC genes in epiblast and extraembryonic patterning during early mouse embryogenesis. Developmental Biology, 2010, 342, 63-73.	0.9	30
70	Monomethylation of Histone H4-Lysine 20 Is Involved in Chromosome Structure and Stability and Is Essential for Mouse Development. Molecular and Cellular Biology, 2009, 29, 2278-2295.	1.1	271
71	Inactivation of <i>p53</i> and <i>Pten</i> promotes invasive bladder cancer. Genes and Development, 2009, 23, 675-680.	2.7	268
72	Prostate-specific Klf6 Inactivation Impairs Anterior Prostate Branching Morphogenesis through Increased Activation of the Shh Pathway. Journal of Biological Chemistry, 2009, 284, 21057-21065.	1.6	24

#	Article	IF	CITATIONS
73	Activation of βâ€Catenin in mouse prostate causes HGPIN and continuous prostate growth after castration. Prostate, 2009, 69, 249-262.	1.2	92
74	A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature, 2009, 461, 495-500.	13.7	654
75	The prostate-cancer metabolome. Nature, 2009, 457, 799-800.	13.7	54
76	Mouse Fem1b interacts with the Nkx3.1 homeoprotein and is required for proper male secondary sexual development. Developmental Dynamics, 2008, 237, 2963-2972.	0.8	11
77	Integrating differentiation and cancer: The Nkx3.1 homeobox gene in prostate organogenesis and carcinogenesis. Differentiation, 2008, 76, 717-727.	1.0	113
78	Sox9 is required for prostate development. Developmental Biology, 2008, 316, 302-311.	0.9	81
79	Stromal Transforming Growth Factor-β Signaling Mediates Prostatic Response to Androgen Ablation by Paracrine Wnt Activity. Cancer Research, 2008, 68, 4709-4718.	0.4	104
80	Role of epithelial cell fibroblast growth factor receptor substrate 2α in prostate development, regeneration and tumorigenesis. Development (Cambridge), 2008, 135, 775-784.	1.2	64
81	Activator Protein-1 Transcription Factors Are Associated with Progression and Recurrence of Prostate Cancer. Cancer Research, 2008, 68, 2132-2144.	0.4	114
82	Progenitor Cells for the Prostate Epithelium: Roles in Development, Regeneration, and Cancer. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 529-538.	2.0	21
83	Nodal signaling: developmental roles and regulation. Development (Cambridge), 2007, 134, 1023-1034.	1.2	451
84	<i>Pten</i> Inactivation and the Emergence of Androgen-Independent Prostate Cancer. Cancer Research, 2007, 67, 6535-6538.	0.4	120
85	Fibroblast growth factor receptor 2 tyrosine kinase is required for prostatic morphogenesis and the acquisition of strict androgen dependency for adult tissue homeostasis. Development (Cambridge), 2007, 134, 723-734.	1.2	98
86	Sulfated glycosaminoglycans are necessary for Nodal signal transmission from the node to the left lateral plate in the mouse embryo. Development (Cambridge), 2007, 134, 3893-3904.	1.2	77
87	FGF Signaling in Prostate Tumorigenesis—New Insights into Epithelial-Stromal Interactions. Cancer Cell, 2007, 12, 495-497.	7.7	39
88	Combinatorial activities of Akt and B-Raf/Erk signaling in a mouse model of androgen-independent prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14477-14482.	3.3	120
89	The Vg1-related protein Gdf3 acts in a Nodal signaling pathway in the pre-gastrulation mouse embryo. Development (Cambridge), 2006, 133, 319-329.	1.2	141
90	Conserved regulation and role of Pitx2 in situs-specific morphogenesis of visceral organs. Development (Cambridge), 2006, 133, 3015-3025.	1.2	90

#	Article	IF	CITATIONS
91	Emergence of Androgen Independence at Early Stages of Prostate Cancer Progression in Nkx3.1; Pten Mice. Cancer Research, 2006, 66, 7929-7933.	0.4	80
92	Two nodal-responsive enhancers control left-right asymmetric expression ofNodal. Developmental Dynamics, 2005, 232, 1031-1036.	0.8	32
93	Non-cell-autonomous role for Cripto in axial midline formation during vertebrate embryogenesis. Development (Cambridge), 2005, 132, 5539-5551.	1.2	56
94	An Unusual Gene Dosage Effect of p27 ^{kip1} in a Mouse Model of Prostate Cancer. Cell Cycle, 2005, 4, 426-428.	1.3	2
95	Context-dependent neuronal differentiation and germ layer induction of Smad4â°'/â^' and Criptoâ°'/â^' embryonic stem cells. Molecular and Cellular Neurosciences, 2005, 28, 417-429.	1.0	38
96	Genetic evidence for nonredundant functional cooperativity between NPC1 and NPC2 in lipid transport. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5886-5891.	3.3	314
97	A Mouse Model of Classical Late-Infantile Neuronal Ceroid Lipofuscinosis Based on Targeted Disruption of the CLN2 Gene Results in a Loss of Tripeptidyl-Peptidase I Activity and Progressive Neurodegeneration. Journal of Neuroscience, 2004, 24, 9117-9126.	1.7	124
98	A critical role for p27kip1 gene dosage in a mouse model of prostate carcinogenesis. Proceedings of the United States of America, 2004, 101, 17204-17209.	3.3	125
99	Two Modes by which Lefty Proteins Inhibit Nodal Signaling. Current Biology, 2004, 14, 618-624.	1.8	174
100	Roles for Hedgehog signaling in androgen production and prostate ductal morphogenesis. Developmental Biology, 2004, 267, 387-398.	0.9	121
101	Foxn4 Controls the Genesis of Amacrine and Horizontal Cells by Retinal Progenitors. Neuron, 2004, 43, 795-807.	3.8	223
102	Roles of theNkx3.1 homeobox gene in prostate organogenesis and carcinogenesis. Developmental Dynamics, 2003, 228, 767-778.	0.8	92
103	β-Catenin regulates Cripto- and Wnt3-dependent gene expression programs in mouse axis and mesoderm formation. Development (Cambridge), 2003, 130, 6283-6294.	1.2	152
104	Distinct modes of floor plate induction in the chick embryo. Development (Cambridge), 2003, 130, 4809-4821.	1.2	75
105	The Trophic Role of Oligodendrocytes in the Basal Forebrain. Journal of Neuroscience, 2003, 23, 5846-5853.	1.7	117
106	Decrypting the role of Cripto in tumorigenesis. Journal of Clinical Investigation, 2003, 112, 500-502.	3.9	29
107	Nkx3.1; Pten mutant mice develop invasive prostate adenocarcinoma and lymph node metastases. Cancer Research, 2003, 63, 3886-90.	0.4	190
108	Cooperativity of Nkx3.1 and Pten loss of function in a mouse model of prostate carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2884-2889.	3.3	295

#	Article	IF	CITATIONS
109	Dual Roles of Cripto as a Ligand and Coreceptor in the Nodal Signaling Pathway. Molecular and Cellular Biology, 2002, 22, 4439-4449.	1.1	188
110	Inhibition of Excess Nodal Signaling During Mouse Gastrulation by the Transcriptional Corepressor DRAP1. Science, 2002, 298, 1996-1999.	6.0	73
111	Prostatic Intraepithelial Neoplasia in Genetically Engineered Mice. American Journal of Pathology, 2002, 161, 727-735.	1.9	154
112	Mouse models of prostate carcinogenesis. Trends in Genetics, 2002, 18, S1-S5.	2.9	117
113	Nkx3.1 mutant mice recapitulate early stages of prostate carcinogenesis. Cancer Research, 2002, 62, 2999-3004.	0.4	207
114	Complementary Functions of Otx2 and Cripto in Initial Patterning of Mouse Epiblast. Developmental Biology, 2001, 235, 12-32.	0.9	70
115	Identification of Differentially Expressed Genes in Mouse Development Using Differential Display and in Situ Hybridization. Methods, 2001, 24, 15-27.	1.9	24
116	Msx homeobox genes inhibit differentiation through upregulation of <i>cyclin D1</i> . Development (Cambridge), 2001, 128, 2373-2384.	1.2	173
117	Loss-of-function mutations in the EGF-CFC gene CFC1 are associated with human left-right laterality defects. Nature Genetics, 2000, 26, 365-369.	9.4	319
118	Nodal signalling in vertebrate development. Nature, 2000, 403, 385-389.	13.7	487
119	The EGF-CFC gene family in vertebrate development. Trends in Genetics, 2000, 16, 303-309.	2.9	204
120	Essential role for p38alpha mitogen-activated protein kinase in placental angiogenesis. Proceedings of the United States of America, 2000, 97, 10454-10459.	3.3	349
121	A Novel PF/PN Motif Inhibits Nuclear Localization and DNA Binding Activity of the ESX1 Homeoprotein. Molecular and Cellular Biology, 2000, 20, 661-671.	1.1	18
122	Molecular genetics of prostate cancer. Genes and Development, 2000, 14, 2410-2434.	2.7	590
123	Roles for Nkx3.1 in prostate development and cancer. Genes and Development, 1999, 13, 966-977.	2.7	569
124	Conserved requirement for EGF-CFC genes in vertebrate left-right axis formation. Genes and Development, 1999, 13, 2527-2537.	2.7	223
125	Evidence for evolutionary conservation of sex-determining genes. Nature, 1998, 391, 691-695.	13.7	725
126	Cripto is required for correct orientation of the anterior–posterior axis in the mouse embryo. Nature, 1998, 395, 702-707.	13.7	444

#	Article	IF	CITATIONS
127	An Early Phase of Embryonic <i>Dlx5</i> Expression Defines the Rostral Boundary of the Neural Plate. Journal of Neuroscience, 1998, 18, 8322-8330.	1.7	104
128	Heterodimerization of Msx and Dlx Homeoproteins Results in Functional Antagonism. Molecular and Cellular Biology, 1997, 17, 2920-2932.	1.1	256
129	Tissue-specific expression of murineNkx3.1 in the male urogenital system. , 1997, 209, 127-138.		155
130	Comparison of MSX-1 and MSX-2 suggests a molecular basis for functional redundancy. Mechanisms of Development, 1996, 55, 185-199.	1.7	124
131	Murine FGFR-1 is required for early postimplantation growth and axial organization Genes and Development, 1994, 8, 3045-3057.	2.7	663
132	Leukemia inhibitory factor is expressed by the preimplantation uterus and selectively blocks primitive ectoderm formation in vitro Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 8240-8244.	3.3	244
133	C. elegans unc-4 gene encodes a homeodomain protein that determines the pattern of synaptic input to specific motor neurons. Nature, 1992, 355, 841-845.	13.7	180
134	Major sex-determining genes and the control of sexual dimorphism in Caenorhabditis elegans. Genome, 1989, 31, 625-637.	0.9	6
135	mab-3, a gene required for sex-specific yolk protein expression and a male-specific lineage in C. elegans. Cell, 1988, 54, 1019-1031.	13.5	235