
Maria C Olianas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4330863/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Upregulation of p75NTR by Histone Deacetylase Inhibitors Sensitizes Human Neuroblastoma Cells to Targeted Immunotoxin-Induced Apoptosis. International Journal of Molecular Sciences, 2022, 23, 3849.	4.1	1
2	The Neurotrophin Receptor TrkC as a Novel Molecular Target of the Antineuroblastoma Action of Valproic Acid. International Journal of Molecular Sciences, 2021, 22, 7790.	4.1	4
3	Cannabinoid CB1 and CB2 receptors differentially regulate TNF-α-induced apoptosis and LPA1-mediated pro-survival signaling in HT22 hippocampal cells. Life Sciences, 2021, 276, 119407.	4.3	9
4	Valproic acid upregulates the expression of the p75NTR/sortilin receptor complex to induce neuronal apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2020, 25, 697-714.	4.9	11
5	Antidepressants induce profibrotic responses via the lysophosphatidic acid receptor LPA1. European Journal of Pharmacology, 2020, 873, 172963.	3.5	11
6	Inhibition of TNF-α-induced neuronal apoptosis by antidepressants acting through the lysophosphatidic acid receptor LPA1. Apoptosis: an International Journal on Programmed Cell Death, 2019, 24, 478-498.	4.9	15
7	Downregulation of TrkB Expression and Signaling by Valproic Acid and Other Histone Deacetylase Inhibitors. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 490-503.	2.5	19
8	Muscarinic Acetylcholine Receptors Potentiate 5′-Adenosine Monophosphate-Activated Protein Kinase Stimulation and Glucose Uptake Triggered by Thapsigargin-Induced Store-Operated Ca2+ Entry in Human Neuroblastoma Cells. Neurochemical Research, 2018, 43, 245-258.	3.3	4
9	Valproic acid up-regulates p75NTR and sortilin expression to induce neuronal cell death. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO2-1-77.	0.0	0
10	Interferon-β Inhibits Neurotrophin 3 Signalling and Pro-Survival Activity by Upregulating the Expression of Truncated TrkC-T1 Receptor. Molecular Neurobiology, 2017, 54, 1825-1843.	4.0	9
11	The GABAB positive allosteric modulators CGP7930 and GS39783 stimulate ERK1/2 signalling in cells lacking functional GABAB receptors. European Journal of Pharmacology, 2017, 794, 135-146.	3.5	8
12	<scp>LPA</scp> ₁ is a key mediator of intracellular signalling and neuroprotection triggered by tetracyclic antidepressants in hippocampal neurons. Journal of Neurochemistry, 2017, 143, 183-197.	3.9	14
13	LPA ₁ Mediates Antidepressant-Induced ERK1/2 Signaling and Protection from Oxidative Stress in Glial Cells. Journal of Pharmacology and Experimental Therapeutics, 2016, 359, 340-353.	2.5	22
14	Protection from interferonâ€Î²â€induced neuronal apoptosis through stimulation of muscarinic acetylcholine receptors coupled to ERK1/2 activation. British Journal of Pharmacology, 2016, 173, 2910-2928.	5.4	10
15	Antidepressants activate the lysophosphatidic acid receptor LPA 1 to induce insulin-like growth factor-l receptor transactivation, stimulation of ERK1/2 signaling and cell proliferation in CHO-K1 fibroblasts. Biochemical Pharmacology, 2015, 95, 311-323.	4.4	26
16	Interferon-β counter-regulates its own pro-apoptotic action by activating p38 MAPK signalling in human SH-SY5Y neuroblastoma cells. Apoptosis: an International Journal on Programmed Cell Death, 2014, 19, 1509-1526.	4.9	10
17	Type I interferons up-regulate the expression and signalling of p75 NTR/TrkA receptor complex in differentiated human SH-SY5Y neuroblastoma cells. Neuropharmacology, 2014, 79, 321-334.	4.1	14
18	Involvement of store-operated Ca2+ entry in activation of AMP-activated protein kinase and stimulation of glucose uptake by M3 muscarinic acetylcholine receptors in human neuroblastoma cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 3004-3017.	4.1	17

#	Article	IF	CITATIONS
19	Coincidence Signaling of Dopamine D ₁ -Like and M ₁ Muscarinic Receptors in the Regulation of Cyclic AMP Formation and CREB Phosphorylation in Mouse Prefrontal Cortex. NeuroSignals, 2013, 21, 61-74.	0.9	6
20	Î-Opioid Receptors Stimulate the Metabolic Sensor AMP-Activated Protein Kinase through Coincident Signaling with G _{q/11} -Coupled Receptors. Molecular Pharmacology, 2012, 81, 154-165.	2.3	17
21	Type I interferons impair BDNFâ€induced cell signaling and neurotrophic activity in differentiated human SH‣Y5Y neuroblastoma cells and mouse primary cortical neurons. Journal of Neurochemistry, 2012, 122, 58-71.	3.9	30
22	The atypical antidepressant mianserin exhibits agonist activity at κâ€opioid receptors. British Journal of Pharmacology, 2012, 167, 1329-1341.	5.4	22
23	Signaling pathways mediating phosphorylation and inactivation of glycogen synthase kinase-3β by the recombinant human δ-opioid receptor stably expressed in Chinese hamster ovary cells. Neuropharmacology, 2011, 60, 1326-1336.	4.1	15
24	Î′â€Opioid receptors stimulate GLUT1â€mediated glucose uptake through Src―and IGFâ€1 receptorâ€dependen activation of PI3â€kinase signalling in CHO cells. British Journal of Pharmacology, 2011, 163, 624-637.	t 5.4	26
25	Regulation of PI3K/Akt signaling by N-desmethylclozapine through activation of δ-opioid receptor. European Journal of Pharmacology, 2011, 660, 341-350.	3.5	20
26	Interferonâ€Î² induces apoptosis in human SH‣Y5Y neuroblastoma cells through activation of JAK–STAT signaling and downâ€regulation of PI3K/Akt pathway. Journal of Neurochemistry, 2010, 115, 1421-1433.	3.9	63
27	Agonist activity of N-desmethylclozapine at δ-opioid receptors of human frontal cortex. European Journal of Pharmacology, 2009, 607, 96-101.	3.5	27
28	Agonist activity of naloxone benzoylhydrazone at recombinant and native opioid receptors. British Journal of Pharmacology, 2006, 147, 360-370.	5.4	19
29	Stimulation of cyclic AMP formation and nerve electrical activity by octopamine in the terminal abdominal ganglion of the female gypsy moth Lymantria dispar. Brain Research, 2006, 1071, 63-74.	2.2	10
30	Allosteric modulation of GABAB receptor function in human frontal cortex. Neurochemistry International, 2005, 46, 149-158.	3.8	17
31	Action of the muscarinic toxin MT7 on agonist-bound muscarinic M1 receptors European Journal of Pharmacology, 2004, 487, 65-72.	3.5	19
32	Sodium ions and GTP decrease the potency of [Nphe1]N/OFQ(1–13)NH2 in blocking nociceptin/orphanin FQ receptors coupled to cyclic AMP in N1E-115 neuroblastoma cells and rat olfactory bulb. Life Sciences, 2003, 72, 2905-2914.	4.3	4
33	Activation of Opioid and Muscarinic Receptors Stimulates Basal Adenylyl Cyclase but Inhibits Ca2+/Calmodulin- and Forskolin-Stimulated Enzyme Activities in Rat Olfactory Bulb. Journal of Neurochemistry, 2002, 63, 161-168.	3.9	21
34	Stimulation of Guanosine 5′-O-(3-[35S]Thiotriphosphate) Binding by Cholinergic Muscarinic Receptors in Membranes of Rat Olfactory Bulb. Journal of Neurochemistry, 2002, 67, 2549-2556.	3.9	20
35	Pharmacological properties of nociceptin/orphanin FQ-induced stimulation and inhibition of cyclic AMP formation in distinct layers of rat olfactory bulb. British Journal of Pharmacology, 2002, 135, 233-238.	5.4	9
36	Involvement of Î ² Î ³ Subunits of Gq/11 in Muscarinic M1 Receptor Potentiation of Corticotropin-Releasing Hormone-Stimulated Adenylyl Cyclase Activity in Rat Frontal Cortex. Journal of Neurochemistry, 2001, 75, 233-239.	3.9	8

MARIA C OLIANAS

#	Article	IF	CITATIONS
37	Inhibition of acetylcholine muscarinic M1 receptor function by the M1 -selective ligand muscarinic toxin 7 (MT-7). British Journal of Pharmacology, 2000, 131, 447-452.	5.4	44
38	GABABreceptor-mediated stimulation of adenylyl cyclase activity in membranes of rat olfactory bulb. British Journal of Pharmacology, 1999, 126, 657-664.	5.4	31
39	Mixed Agonist–Antagonist Properties of Clozapine at Different Human Cloned Muscarinic Receptor Subtypes Expressed in Chinese Hamster Ovary Cells. Neuropsychopharmacology, 1999, 20, 263-270.	5.4	57
40	Effects of clozapine on rat striatal muscarinic receptors coupled to inhibition of adenylyl cyclase activity and on the human cloned m4 receptor. British Journal of Pharmacology, 1997, 122, 401-408.	5.4	41
41	Rat striatal muscarinic receptors coupled to the inhibition of adenylyl cyclase activity: potent block by the selective m ₄ ligand muscarinic toxin 3 (MT3). British Journal of Pharmacology, 1996, 118, 283-288.	5.4	63
42	Antagonism of striatal muscarinic receptors inhibiting dopamine D ₁ receptorâ€stimulated adenylyl cyclase activity by cholinoceptor antagonists used to treat Parkinson's disease. British Journal of Pharmacology, 1996, 118, 827-828.	5.4	14
43	Antagonism by (R)―and (S)â€ŧrihexyphenidyl of muscarinic stimulation of adenylyl cyclase in rat olfactory bulb and inhibition in striatum and heart. British Journal of Pharmacology, 1994, 113, 775-780.	5.4	9
44	Synergistic Interaction of Muscarinic and Opioid Receptors with Gs-Linked Neurotransmitter Receptors to Stimulate Adenylyl Cyclase Activity of Rat Olfactory Bulb. Journal of Neurochemistry, 1993, 61, 2183-2190.	3.9	18
45	Pertussis Toxin Attenuates D2Inhibition and Enhances D1Stimulation of Adenylate Cyclase by Dopamine in Rat Striatum. Journal of Neurochemistry, 1987, 48, 1443-1447.	3.9	27
46	Phorbol Esters Increase GTPâ€Dependent Adenylate Cyclase Activity in Rat Brain Striatal Membranes. Journal of Neurochemistry, 1986, 47, 890-897.	3.9	38