
Claire Marie Filone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4330749/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Small molecule inhibitors reveal Niemann–Pick C1 is essential for Ebola virus infection. Nature, 2011, 477, 344-348.	27.8	601
2	N-Glycans on Nipah Virus Fusion Protein Protect against Neutralization but Reduce Membrane Fusion and Viral Entry. Journal of Virology, 2006, 80, 4878-4889.	3.4	168
3	Filoviruses Require Endosomal Cysteine Proteases for Entry but Exhibit Distinct Protease Preferences. Journal of Virology, 2012, 86, 3284-3292.	3.4	114
4	Polybasic KKR Motif in the Cytoplasmic Tail of Nipah Virus Fusion Protein Modulates Membrane Fusion by Inside-Out Signaling. Journal of Virology, 2007, 81, 4520-4532.	3.4	91
5	Polyamines and Hypusination Are Required for Ebolavirus Gene Expression and Replication. MBio, 2016, 7, .	4.1	50
6	Presence of broadly reactive and group-specific neutralizing epitopes on newly described isolates of Crimean-Congo hemorrhagic fever virus. Journal of General Virology, 2005, 86, 3327-3336.	2.9	47
7	Activation of Stress Response Pathways Promotes Formation of Antiviral Granules and Restricts Virus Replication. Molecular and Cellular Biology, 2014, 34, 2003-2016.	2.3	47
8	Rift Valley Fever Virus Infection of Human Cells and Insect Hosts Is Promoted by Protein Kinase C Epsilon. PLoS ONE, 2010, 5, e15483.	2.5	47
9	Development and characterization of a Rift Valley fever virus cell–cell fusion assay using alphavirus replicon vectors. Virology, 2006, 356, 155-164.	2.4	46
10	The Master Regulator of the Cellular Stress Response (HSF1) Is Critical for Orthopoxvirus Infection. PLoS Pathogens, 2014, 10, e1003904.	4.7	35
11	Discovery of a Novel Compound with Anti-Venezuelan Equine Encephalitis Virus Activity That Targets the Nonstructural Protein 2. PLoS Pathogens, 2014, 10, e1004213.	4.7	34
12	Differences in the Comparative Stability of Ebola Virus Makona-C05 and Yambuku-Mayinga in Blood. PLoS ONE, 2016, 11, e0148476.	2.5	25
13	Identification of a Broad-Spectrum Inhibitor of Viral RNA Synthesis: Validation of a Prototype Virus-Based Approach. Chemistry and Biology, 2013, 20, 424-433.	6.0	21
14	Identification of a Pyridopyrimidinone Inhibitor of Orthopoxviruses from a Diversity-Oriented Synthesis Library. Journal of Virology, 2012, 86, 2632-2640.	3.4	14
15	Vaccinia Reporter Viruses for Quantifying Viral Function at All Stages of Gene Expression. Journal of Visualized Experiments, 2014, , .	0.3	5
16	Probing the Virus Host Interaction in High Containment: An Approach Using Pooled Short Hairpin RNA. Assay and Drug Development Technologies, 2015, 13, 34-43.	1.2	3
17	Approaches for antiviral probe development: new libraries, new mechanisms. Future Virology, 2013, 8, 625-627.	1.8	0