
João G Ferreira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4330743/publications.pdf Version: 2024-02-01

LOÃEO C FEDDEIDA

#	Article	IF	CITATIONS
1	Structural, material, mechanical and durability properties and behaviour of recycled aggregates concrete. Journal of Building Engineering, 2016, 6, 1-16.	1.6	161
2	Use of coarse recycled aggregates from precast concrete rejects: Mechanical and durability performance. Construction and Building Materials, 2014, 71, 263-272.	3.2	149
3	Flexural behaviour of GFRP–concrete hybrid beams with interconnection slip. Composite Structures, 2007, 77, 66-78.	3.1	97
4	Fire protection systems for building floors made of pultruded GFRP profiles. Composites Part B: Engineering, 2010, 41, 617-629.	5.9	81
5	Durability of pultruded glass-fiber-reinforced polyester profiles for structural applications. Mechanics of Composite Materials, 2006, 42, 325-338.	0.9	70
6	GFRP–concrete hybrid cross-sections for floors of buildings. Engineering Structures, 2009, 31, 1331-1343.	2.6	63
7	Flexural load tests of full-scale recycled aggregates concrete structures. Construction and Building Materials, 2015, 101, 65-71.	3.2	54
8	The effect of different passive fire protection systems on the fire reaction properties of GFRP pultruded profiles for civil construction. Composites Part A: Applied Science and Manufacturing, 2010, 41, 441-452.	3.8	48
9	In situ materials characterization of full-scale recycled aggregates concrete structures. Construction and Building Materials, 2014, 71, 237-245.	3.2	45
10	Fire protection systems for building floors made of pultruded GFRP profiles – Part 2: Modeling of thermomechanical responses. Composites Part B: Engineering, 2010, 41, 630-636.	5.9	44
11	Destructive Horizontal Load Tests of Full-Scale Recycled-Aggregate Concrete Structures. ACI Structural Journal, 2015, 112, .	0.3	43
12	Flexural behaviour of multi-span GFRP-concrete hybrid beams. Engineering Structures, 2009, 31, 1369-1381.	2.6	39
13	Experimental characterization of in-plane behaviour of old masonry walls strengthened through the addition of CFRP reinforced render. Composites Part B: Engineering, 2018, 148, 14-26.	5.9	34
14	Timbered masonry for earthquake resistance in Europe. Materiales De Construccion, 2012, 62, 615-628.	0.2	34
15	Dynamic characterization of full-scale structures made with recycled coarse aggregates. Journal of Cleaner Production, 2017, 142, 4195-4205.	4.6	32
16	Structural application of GRC in telecommunication towers. Construction and Building Materials, 2007, 21, 19-28.	3.2	31
17	Experimental Evaluation and Numerical Modelling of Timber-Framed Walls. Experimental Techniques, 2014, 38, 45-53.	0.9	28
18	THE USE OF GLASS FIBER?REINFORCED CONCRETE AS A STRUCTURAL MATERIAL. Experimental Techniques, 2007, 31, 64-73.	0.9	27

João G Ferreira

#	Article	IF	CITATIONS
19	Modulus of elasticity of mortars: Static and dynamic analyses. Construction and Building Materials, 2020, 232, 117216.	3.2	27
20	A rehabilitation study of sandwich GRC facade panels. Construction and Building Materials, 2006, 20, 554-561.	3.2	24
21	Cyclic behavior of composite timber-masonry wall in quasi-dynamic conditions reinforced with superelastic damper. Construction and Building Materials, 2014, 52, 166-176.	3.2	16
22	SIMULATION OF THE ATMOSPHERIC BOUNDARY LAYER FOR MODEL TESTING IN A SHORT WIND TUNNEL. Experimental Techniques, 2008, 32, 36-43.	0.9	15
23	Behaviour and repair of carpentry connections – Rotational behaviour of the rafter and tie beam connection in timber roof structures. Journal of Cultural Heritage, 2012, 13, S64-S73.	1.5	15
24	Effect of the Addition of GGBS on the Frost Scaling and Chloride Migration Resistance of Concrete. Applied Sciences (Switzerland), 2020, 10, 3940.	1.3	13
25	Experimental and numerical study on the effect of repairing reinforced concrete cracked beams strengthened with carbon fibre reinforced polymer laminates. Canadian Journal of Civil Engineering, 2014, 41, 222-231.	0.7	11
26	Bonding and anchoring of a CFRP reinforced render for the external strengthening of old masonry buildings. Construction and Building Materials, 2017, 155, 56-64.	3.2	11
27	Experimental and numerical analysis of GFRP frame structures. Part 2: Monotonic and cyclic sway behaviour of plane frames. Composite Structures, 2019, 220, 194-208.	3.1	11
28	Strengthening of Old Masonry Walls for out-of-Plane Seismic Loading with a CFRP Reinforced Render. Experimental Techniques, 2018, 42, 355-369.	0.9	10
29	Failure behaviour and repair of delaminated glulam beams. Construction and Building Materials, 2017, 154, 384-398.	3.2	6
30	Characterization of reinforced Timber Masonry Walls in "Pombalino―buildings with dynamic tests. Engineering Structures, 2018, 166, 93-106.	2.6	6
31	Sustainable Campus: The Experience of the University of Lisbon at IST. Sustainability, 2021, 13, 8050.	1.6	5
32	Characterization of timber masonry walls with dynamic tests. International Journal of Architectural Heritage, 2019, 13, 298-313.	1.7	4
33	Experimental and numerical analysis of the behaviour of masonry walls strengthened with CFRP reinforced render. Asian Journal of Civil Engineering, 2020, 21, 331-349.	0.8	4
34	Numerical calculation of the wind action on buildings using Eurocode 1 atmospheric boundary layer velocity profiles. Wind and Structures, an International Journal, 2010, 13, 487-498.	0.8	4
35	Seismic retrofitting of timber framed walls. Materiales De Construccion, 2014, 64, e040.	0.2	4
36	Experimental Evaluation of Brick Masonry Walls Strengthened with TRM (Textile Reinforced Mortar) Renders. Buildings, 2022, 12, 840.	1.4	4

João G Ferreira

#	Article	IF	CITATIONS
37	Lifetime Performance of GFRP Pultruded Profiles for Structural Applications. , 2007, , .		3
38	An innovative anchoring system for old masonry buildings. Journal of Building Engineering, 2017, 13, 184-195.	1.6	3
39	SHELTER – Structural Hyper-resisting Element for Life Threatening Earthquake Risk. An innovative approach for seismic protection. Engineering Structures, 2021, 235, 112012.	2.6	3
40	Experimental characterization of timber framed masonry walls cyclic behaviour. Structural Engineering and Mechanics, 2015, 53, 189-204.	1.0	3
41	In-Plane Seismic Behavior of Brick Masonry Walls Reinforced with Twisted Steel Bars and Conventional Steel Bars. Buildings, 2022, 12, 421.	1.4	3
42	LOAD TESTING OF THE VIADUCTS OF THE NORTH-SOUTH RAILWAY CROSSING IN LISBON. Experimental Techniques, 2010, 34, 38-48.	0.9	2
43	Incremental seismic rehabilitation concept for Romanian civil buildings integrated in natural hazards prevention management. International Journal of Emergency Management, 2013, 9, 248.	0.2	2
44	SHELTER – Structural Hyper-resisting element for life Threatening Earthquake Risk. Static tests on the shelter structure. Journal of Building Engineering, 2022, 47, 103824.	1.6	2
45	The Design of a Structural Hyper-Resisting Element for Life-Threatening Earthquake Risk (SHELTER) for Building Collapse Scenarios: The Safety Chairs. Applied Sciences (Switzerland), 2022, 12, 4103.	1.3	2
46	Measurement of Vertical Deformations in Bridges Using an Innovative Elastic Cell System. Experimental Techniques, 2015, 39, 13-20.	0.9	1
47	Numerical Simulation of GRC Mechanical Behavior. Journal of Materials in Civil Engineering, 2007, 19, 445-453.	1.3	0
48	Characterization of Timber Masonry Walls with Dynamic Tests. Lecture Notes in Civil Engineering, 2016, , 299-309.	0.3	0
49	Método para el diseño arquitectónico de casas de madera en Portugal. Informes De La Construccion, 2020, 72, e370.	0.1	0
50	Optical Measurement of Planar Deformations in the Destructive Mechanical Testing of Masonry Specimens. Applied Sciences (Switzerland), 2020, 10, 371.	1.3	0