
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4330201/publications.pdf Version: 2024-02-01

YU-GUANC YANG

#	Article	IF	CITATIONS
1	A visually meaningful image encryption algorithm based on adaptive 2D compressive sensing and chaotic system. Multimedia Tools and Applications, 2023, 82, 22033-22062.	3.9	12
2	Detector-Device-Independent Quantum Key Agreement Based on Single-Photon Bell State Measurement. International Journal of Theoretical Physics, 2022, 61, 1.	1.2	13
3	Three-Party Quantum Secure Direct Communication Protocol with Adaptive Capacity. International Journal of Theoretical Physics, 2022, 61, .	1.2	2
4	Measurement-device-independent quantum wireless network communication. Quantum Information Processing, 2022, 21, 1.	2.2	10
5	Deterministic secure quantum communication based on spatial encoding. Quantum Information Processing, 2022, 21, 1.	2.2	4
6	Discrimination of two nonorthogonal states against amplitudeâ€damping noise via feedâ€forward control. Concurrency Computation Practice and Experience, 2022, 34, .	2.2	0
7	Intrusion detection: A model based on the improved vision transformer. Transactions on Emerging Telecommunications Technologies, 2022, 33, .	3.9	6
8	Continuous-time quantum hash function based on one-dimensional cycle lattice. Modern Physics Letters B, 2022, 36, .	1.9	2
9	Multiparty anonymous quantum communication without multipartite entanglement. Quantum Information Processing, 2022, 21, .	2.2	7
10	Dual embedding model: a new framework for visually meaningful image encryption. Multimedia Tools and Applications, 2021, 80, 9055-9074.	3.9	15
11	Double image compression-encryption algorithm based on fractional order hyper chaotic system and DNA approach. Multimedia Tools and Applications, 2021, 80, 691-710.	3.9	31
12	Participant attack on the deterministic measurement-device-independent quantum secret sharing protocol. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	5.1	28
13	Efficient quantum multi-hop communication based on Greenberger–Horne–Zeilinger states and Bell states. Quantum Information Processing, 2021, 20, 1.	2.2	14
14	High-capacity measurement-device-independent deterministic secure quantum communication. Quantum Information Processing, 2021, 20, 1.	2.2	5
15	Visually meaningful image encryption based on universal embedding model. Information Sciences, 2021, 562, 304-324.	6.9	35
16	A stronger participant attack on the measurement-device-independent protocol for deterministic quantum secret sharing. Quantum Information Processing, 2021, 20, 1.	2.2	13
17	Detectorâ€deviceâ€independent quantum secret sharing based on hyperâ€encoding and singleâ€photon Bellâ€state measurement. Quantum Engineering, 2021, 3, e76.	2.5	3
18	Using M-ary decomposition and virtual bits for visually meaningful image encryption. Information Sciences, 2021, 580, 174-201.	6.9	25

#	Article	IF	CITATIONS
19	Usefulness of Decoherence in Quantum-Walk-Based Hash Function. International Journal of Theoretical Physics, 2021, 60, 1025-1037.	1.2	5
20	Semi-device-independent quantum key agreement protocol. Quantum Information Processing, 2021, 20, 1.	2.2	7
21	Towards practical anonymous quantum communication: A measurement-device-independent approach. Physical Review A, 2021, 104, .	2.5	13
22	Discriminating two non-orthogonal states against decoherence by feedback control. Quantum Information Processing, 2020, 19, 1.	2.2	0
23	Simulation algorithm on the quantum BB84 protocol based on Monte Carlo method in classical computer environment. Quantum Information Processing, 2020, 19, 1.	2.2	1
24	Better quantum control does not imply better discrimination effect. Quantum Information Processing, 2020, 19, 1.	2.2	0
25	Examining the correctness of anonymity for practical quantum networks. Physical Review A, 2020, 101,	2.5	15
26	Quantum wireless network communication based on cluster states. Modern Physics Letters A, 2020, 35, 2050178.	1.2	10
27	Continuous-variable multiparty quantum key agreement based on third party. Modern Physics Letters B, 2020, 34, 2050083.	1.9	5
28	Sequential Quantum Multiparty Signature Based on Quantum Fourier Transform and Chaotic System. IEEE Access, 2020, 8, 13218-13227.	4.2	4
29	Visually meaningful encryption for color images by using Qi hyper-chaotic system and singular value decomposition in YCbCr color space. Optik, 2020, 213, 164422.	2.9	33
30	Two-party quantum key agreement against collective noisy channel. Quantum Information Processing, 2020, 19, 1.	2.2	6
31	Quantum key distribution based on single-particle and EPR entanglement. Science China Information Sciences, 2020, 63, 1.	4.3	5
32	Image compression-encryption scheme based on fractional order hyper-chaotic systems combined with 2D compressed sensing and DNA encoding. Optics and Laser Technology, 2019, 119, 105661.	4.6	61
33	One Step Quantum Key Distribution Protocol Based on the Hyperentangled Bell State. IEEE Access, 2019, 7, 120006-120013.	4.2	2
34	A new kind of universal and flexible quantum information splitting scheme with multi-coin quantum walks. Quantum Information Processing, 2019, 18, 1.	2.2	7
35	Continuous-Variable Arbitrated Quantum Signature Based on Dense Coding and Teleportation. IEEE Access, 2019, 7, 85719-85726.	4.2	1
36	New quantum key agreement protocols based on Bell states. Quantum Information Processing, 2019, 18, 1.	2.2	26

#	Article	IF	CITATIONS
37	Quantum state transfer on unsymmetrical graphs via discrete-time quantum walk. Modern Physics Letters A, 2019, 34, 1950317.	1.2	5
38	Two-party quantum key agreement over a collective noisy channel. Quantum Information Processing, 2019, 18, 1.	2.2	17
39	A scheme on converting quantum deniable authentication into universal quantum designated verifier signature. Optik, 2019, 190, 10-20.	2.9	2
40	New Secure Quantum Dialogue Protocols over Collective Noisy Channels. International Journal of Theoretical Physics, 2019, 58, 2810-2822.	1.2	11
41	Deterministic Quantum Secure Direct Communication Protocol Based on Hyper-Entangled State. IEEE Access, 2019, 7, 43948-43955.	4.2	6
42	Three-party quantum secret sharing against collective noise. Quantum Information Processing, 2019, 18, 1.	2.2	24
43	Quantum Private Query With Perfect Performance Universally Applicable Against Collective-Noise. IEEE Access, 2019, 7, 29313-29319.	4.2	7
44	Generalized teleportation by means of discrete-time quantum walks on N-lines and N-cycles. Modern Physics Letters B, 2019, 33, 1950070.	1.9	7
45	Quantum Wireless Network Private Query With Multiple Third Parties. IEEE Access, 2019, 7, 33964-33969.	4.2	2
46	Hash Function Based on Quantum Walks. International Journal of Theoretical Physics, 2019, 58, 1861-1873.	1.2	9
47	Efficient quantum private comparison protocol based on the entanglement swapping between four-qubit cluster state and extended Bell state. Quantum Information Processing, 2019, 18, 1.	2.2	28
48	The Security Analysis of Quantum B92 Protocol in Collective-Rotation Noise Channel. International Journal of Theoretical Physics, 2019, 58, 1326-1336.	1.2	2
49	Verifiable Quantum Secret Sharing Protocols Based on Four-Qubit Entangled States. International Journal of Theoretical Physics, 2019, 58, 1202-1214.	1.2	15
50	New quantum key agreement protocols based on cluster states. Quantum Information Processing, 2019, 18, 1.	2.2	19
51	Deterministic Quantum Secure Direct Communication Protocol Based on Omega State. IEEE Access, 2019, 7, 6915-6921.	4.2	8
52	Reducing the communication complexity of quantum private database queries by subtle classical post-processing with relaxed quantum ability. Computers and Security, 2019, 81, 15-24.	6.0	18
53	Two Quantum Coins Sharing a Walker. International Journal of Theoretical Physics, 2019, 58, 700-712.	1.2	3
54	Design and Simulation of a Quantum Key Distribution Protocol Based on Single-Particle and EPR Entanglement. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2019, , 278-287.	0.3	0

#	Article	IF	CITATIONS
55	Improving the efficiency of quantum hash function by dense coding of coin operators in discrete-time quantum walk. Science China: Physics, Mechanics and Astronomy, 2018, 61, 1.	5.1	16
56	Controlled Alternate Quantum Walks based Quantum Hash Function. Scientific Reports, 2018, 8, 225.	3.3	30
57	Quantum network communication: a discrete-time quantum-walk approach. Science China Information Sciences, 2018, 61, 1.	4.3	27
58	A scheme on converting quantum signature with public verifiability into quantum designated verifier signature. Optik, 2018, 164, 753-759.	2.9	13
59	A Quantum Private Query Protocol for Enhancing both User and Database Privacy. Communications in Theoretical Physics, 2018, 69, 31.	2.5	5
60	Eliminating the texture features in visually meaningful cipher images. Information Sciences, 2018, 429, 102-119.	6.9	32
61	An Android Malware Detection System Based on Feature Fusion. Chinese Journal of Electronics, 2018, 27, 1206-1213.	1.5	12
62	A Restricted Quantum Deniable Authentication Protocol Based on GHZ States. Chinese Journal of Electronics, 2018, 27, 229-233.	1.5	3
63	Constructing quantum Hash functions based on quantum walks on Johnson graphs. Quantum Information Processing, 2018, 17, 1.	2.2	13
64	The security analysis of E91 protocol in collective-rotation noise channel. International Journal of Distributed Sensor Networks, 2018, 14, 155014771877819.	2.2	3
65	Simple hash function using discrete-time quantum walks. Quantum Information Processing, 2018, 17, 1.	2.2	98
66	Flexible Quantum Oblivious Transfer. International Journal of Theoretical Physics, 2017, 56, 1286-1297.	1.2	14
67	Theoretically extensible quantum digital signature with starlike cluster states. Quantum Information Processing, 2017, 16, 1.	2.2	20
68	Robust QKD-based private database queries based on alternative sequences of single-qubit measurements. Science China: Physics, Mechanics and Astronomy, 2017, 60, 1.	5.1	31
69	Novel pseudo-random number generator based on quantum random walks. Scientific Reports, 2016, 6, 20362.	3.3	37
70	Practical Quantum Private Database Queries Based on Passive Round-Robin Differential Phase-shift Quantum Key Distribution. Scientific Reports, 2016, 6, 31738.	3.3	20
71	Quantum private query with perfect user privacy against a joint-measurement attack. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 4033-4038.	2.1	46
72	Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption. Scientific Reports, 2016, 6, 19788.	3.3	63

#	Article	IF	CITATIONS
73	Novel classical post-processing for quantum key distribution-based quantum private query. Quantum Information Processing, 2016, 15, 3833-3840.	2.2	39
74	Letter to the Editor regarding "Dynamic watermarking scheme for quantum images based on Hadamard transform―by Song et al Multimedia Systems, 2016, 22, 271-272.	4.7	7
75	Arbitrated quantum signature scheme based on cluster states. Quantum Information Processing, 2016, 15, 2487-2497.	2.2	74
76	Novel quantum image encryption using one-dimensional quantum cellular automata. Information Sciences, 2016, 345, 257-270.	6.9	120
77	Reductions between private information retrieval and oblivious transfer at the quantum level. Optik, 2015, 126, 3206-3209.	2.9	5
78	Trojan-horse attacks on quantum key distribution with classical Bob. Quantum Information Processing, 2015, 14, 681-686.	2.2	39
79	Relativistic quantum private database queries. Quantum Information Processing, 2015, 14, 1443-1450.	2.2	22
80	A new quantum blind signature with unlinkability. Quantum Information Processing, 2015, 14, 3019-3030.	2.2	19
81	Quantum oblivious transfer with relaxed constraints on the receiver. Quantum Information Processing, 2015, 14, 3031-3040.	2.2	9
82	Novel Image Encryption based on Quantum Walks. Scientific Reports, 2015, 5, 7784.	3.3	66
83	Quantum Oblivious Transfer Based on a Quantum Symmetrically Private Information Retrieval Protocol. International Journal of Theoretical Physics, 2015, 54, 910-916.	1.2	11
84	A novel quantum deniable authentication protocol without entanglement. Quantum Information Processing, 2015, 14, 2183-2193.	2.2	19
85	A Real Quantum Designated Verifier Signature Scheme. International Journal of Theoretical Physics, 2015, 54, 3115-3123.	1.2	14
86	Novel quantum gray-scale image matching. Optik, 2015, 126, 3340-3343.	2.9	21
87	Quantum-assisted encryption for digital audio signals. Optik, 2015, 126, 3221-3226.	2.9	11
88	Quantum oblivious transfer based on unambiguous set discrimination. Optik, 2015, 126, 3838-3843.	2.9	9
89	Quantum signature-masked authentication schemes. Optik, 2015, 126, 3544-3548.	2.9	2
90	Private database queries using one quantum state. Quantum Information Processing, 2015, 14, 1017-1024.	2.2	53

#	Article	IF	CITATIONS
91	A Quantum Protocol for Millionaire Problem with Continuous Variables. Communications in Theoretical Physics, 2014, 61, 452-456.	2.5	10
92	Flexible protocol for quantum private query based on B92 protocol. Quantum Information Processing, 2014, 13, 805-813.	2.2	84
93	Comment on "efficient and feasible quantum private comparison of equality against the collective amplitude damping noise― Quantum Information Processing, 2014, 13, 573-585.	2.2	2
94	Analysis and improvement of the dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Information Processing, 2014, 13, 1931-1936.	2.2	32
95	Quantum oblivious transfer with an untrusted third party. Optik, 2014, 125, 5409-5413.	2.9	9
96	Quantum cryptographic algorithm for color images using quantum Fourier transform and double random-phase encoding. Information Sciences, 2014, 277, 445-457.	6.9	76
97	Quantum deniable authentication protocol. Quantum Information Processing, 2014, 13, 1501-1510.	2.2	22
98	Comment on "The enhanced quantum blind signature protocol― Quantum Information Processing, 2014, 13, 1305-1312.	2.2	2
99	Secure quantum private query with real-time security check. Optik, 2014, 125, 5538-5541.	2.9	31
100	Novel image encryption/decryption based on quantum Fourier transform and double phase encoding. Quantum Information Processing, 2013, 12, 3477-3493.	2.2	102
101	Analysis and improvement of the watermark strategy for quantum images based on quantum Fourier transform. Quantum Information Processing, 2013, 12, 2765-2769.	2.2	59
102	Quantum Authenticated Direct Communication Using Bell States. International Journal of Theoretical Physics, 2013, 52, 336-344.	1.2	5
103	A Quantum Protocol for (t,n)-Threshold Identity Authentication Based on Greenberger-Horne-Zeilinger States. International Journal of Theoretical Physics, 2013, 52, 524-530.	1.2	22
104	Comment on quantum private comparison protocols with a semi-honest third party. Quantum Information Processing, 2013, 12, 877-885.	2.2	104
105	Economical five-party quantum state sharing of an arbitrary m-atom with five-atom cluster state in cavity QED. European Physical Journal D, 2013, 67, 1.	1.3	2
106	Research and implementation of image enhancement algorithm based on local mean and standard deviation. , 2012, , .		4
107	Comment on "Quantum Secure Direct Communication with Authentication Expansion Using Single Photons― International Journal of Theoretical Physics, 2012, 51, 3681-3687.	1.2	6
108	Verifiable quantum (k, n)-threshold secret sharing. Quantum Information Processing, 2012, 11, 1619-1625.	2.2	44

#	Article	IF	CITATIONS
109	Undeniable quantum state sharing with a five-atom cluster state in cavity QED. Science China: Physics, Mechanics and Astronomy, 2012, 55, 2439-2444.	5.1	3
110	Scheme for Implementing Quantum Dense Coding with ï‡-Type Entangled States in Optical Systems. International Journal of Theoretical Physics, 2012, 51, 1917-1923.	1.2	3
111	Arbitrated quantum signature with an untrusted arbitrator. European Physical Journal D, 2011, 61, 773-778.	1.3	54
112	Improving the Security of Controlled Quantum Secure Direct Communication by Using Four Particle Cluster States Against an Attack with Fake Entangled Particles. International Journal of Theoretical Physics, 2011, 50, 395-400.	1.2	28
113	Verifiable Quantum (k,n)-threshold Secret Key Sharing. International Journal of Theoretical Physics, 2011, 50, 792-798.	1.2	53
114	Revisiting the security of secure direct communication based on ping-pong protocol[Quantum Inf. Process. 8, 347 (2009)]. Quantum Information Processing, 2011, 10, 317-323.	2.2	29
115	Member expansion in quantum (t,n) threshold secret sharing schemes. Optics Communications, 2011, 284, 3479-3482.	2.1	46
116	Fault tolerant quantum secret sharing against collective-amplitude-damping noise. Science China: Physics, Mechanics and Astronomy, 2011, 54, 1619-1624.	5.1	23
117	Fault-tolerant quantum secret sharing against collective noise. Physica Scripta, 2011, 83, 025003.	2.5	29
118	Automatic video object segmentation algorithm based on background reconstruction. , 2011, , .		3
119	Universal Three-Party Quantum Secret Sharing Against Collective Noise. Communications in Theoretical Physics, 2011, 55, 589-593.	2.5	18
120	Quantum secure direct communication with cluster states. Science China: Physics, Mechanics and Astronomy, 2010, 53, 1271-1275.	5.1	65
121	Arbitrated quantum signature of classical messages against collective amplitude damping noise. Optics Communications, 2010, 283, 3198-3201.	2.1	46
122	THRESHOLD MULTIPARTY QUANTUM-INFORMATION SPLITTING VIA QUANTUM CHANNEL ENCRYPTION. International Journal of Quantum Information, 2009, 07, 1249-1254.	1.1	33
123	REEXAMINING THE SECURITY OF THE RECONSTRUCTION PHASE OF THE HILLERY-BUZÄšK-BERTHIAUME QUANTUM SECRET-SHARING PROTOCOL. International Journal of Quantum Information, 2009, 07, 1357-1362.	1.1	0
124	Secure quantum private comparison. Physica Scripta, 2009, 80, 065002.	2.5	103
125	An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. Journal of Physics A: Mathematical and Theoretical, 2009, 42, 055305.	2.1	249
126	Comment on: "Efficient high-capacity quantum secret sharing with two-photon entanglement―[Phys. Lett. A 372 (2008) 1957]. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 396-398.	2.1	17

#	Article	IF	CITATIONS
127	Improved secure quantum sealed-bid auction. Optics Communications, 2009, 282, 4167-4170.	2.1	61
128	Threshold quantum secure direct communication without entanglement. Science in China Series G: Physics, Mechanics and Astronomy, 2008, 51, 176-183.	0.2	35
129	Multiparty simultaneous quantum identity authentication with secret sharing. Science in China Series G: Physics, Mechanics and Astronomy, 2008, 51, 321-327.	0.2	42
130	Threshold proxy quantum signature scheme with threshold shared verification. Science in China Series G: Physics, Mechanics and Astronomy, 2008, 51, 1079-1088.	0.2	43
131	Threshold quantum secret sharing between multi-party and multi-party. Science in China Series G: Physics, Mechanics and Astronomy, 2008, 51, 1308-1315.	0.2	36
132	Quantum threshold group signature. Science in China Series G: Physics, Mechanics and Astronomy, 2008, 51, 1505-1514.	0.2	22
133	Quasi-secure quantum dialogue using single photons. Science in China Series G: Physics, Mechanics and Astronomy, 2007, 50, 558-562.	0.2	75
134	A unidirectional certificateless proxy reâ€signature scheme based on lattice. Transactions on Emerging Telecommunications Technologies, 0, , .	3.9	1