Song Qiushi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4329986/publications.pdf

Version: 2024-02-01

840776 713466 28 474 11 21 h-index g-index citations papers 29 29 29 454 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A Green Electrochemical Process to Recover Co and Li from Spent LiCoO ₂ -Based Batteries in Molten Salts. ACS Sustainable Chemistry and Engineering, 2019, 7, 13391-13399.	6.7	93
2	Electrochemical deposition of carbon films on titanium in molten LiCl–KCl–K2CO3. Thin Solid Films, 2012, 520, 6856-6863.	1.8	48
3	Tailoring the Polymer-Derived Carbon Encapsulated Silicon Nanoparticles for High-Performance Lithium-lon Battery Anodes. ACS Applied Energy Materials, 2020, 3, 268-278.	5.1	42
4	Preparation of niobium carbide powder by electrochemical reduction in molten salt. Journal of Alloys and Compounds, 2015, 647, 245-251.	5.5	32
5	Synthesis of Ni-TiC composite powder electrochemically in molten chlorides. Journal of Alloys and Compounds, 2017, 690, 116-122.	5 . 5	31
6	A Natural Transporter of Silicon and Carbon: Conversion of Rice Husks to Silicon Carbide or Carbonâ€Silicon Hybrid for Lithiumâ€Ion Battery Anodes via a Molten Salt Electrolysis Approach. Batteries and Supercaps, 2019, 2, 1007-1015.	4.7	27
7	Preparation of a gradient Ti–TiOC-carbon film by electro-deposition. Electrochemistry Communications, 2012, 17, 6-9.	4.7	18
8	The electrochemical synthesis of TiC reinforced Fe based composite powder from titanium-rich slag. New Journal of Chemistry, 2015, 39, 4391-4397.	2.8	18
9	Electrochemical Preparation of a Carbon/Cr-O-C Bilayer Film on Stainless Steel in Molten LiCl-KCl-K2CO3. Journal of the Electrochemical Society, 2015, 162, D82-D85.	2.9	16
10	Engineering the porosity and superelastic behaviors of NiTi alloys prepared by an electro-assisted powder metallurgical route in molten salts. Journal of Alloys and Compounds, 2019, 794, 455-464.	5 . 5	13
11	Electrochemical synthesis of CeNi4Cu alloy from the mixed oxides and in situ heat treatment in a eutectic LiCl–KCl melt. Materials Letters, 2010, 64, 2258-2260.	2.6	12
12	Electrochemical Co-Desulfurization-Deoxidation of Low-Grade Nickel-Copper Matte in Molten Salts. Journal of the Electrochemical Society, 2018, 165, E578-E583.	2.9	12
13	Electrochemical Fabrication of Multicore-Shell Ni-TaC Composite Particles in Molten Salt. Journal of the Electrochemical Society, 2016, 163, E49-E53.	2.9	11
14	A novel preparation of Zr–Si intermetallics by electrochemical reduction of ZrSiO4 in molten salts. New Journal of Chemistry, 2015, 39, 9969-9975.	2.8	10
15	Electrochemically assisted carbonization of Nb in molten salt. Surface and Coatings Technology, 2019, 358, 865-872.	4.8	10
16	In situ nano-sized ZrC/ZrSi composite powder fabricated by a one-pot electrochemical process in molten salts. RSC Advances, 2017, 7, 2301-2307.	3.6	9
17	Electrochemical deposition of tantalum carbide coatings in molten LiClâ€KClâ€K ₂ CO ₃ . Journal of the American Ceramic Society, 2018, 101, 3808-3816.	3.8	9
18	An in situ spectroscopic study on decomposition of MgSiO ₃ during the alkali fusion process using sodium hydroxide. New Journal of Chemistry, 2014, 38, 1528-1532.	2.8	8

#	Article	IF	CITATIONS
19	An Electro-Assisted Powder Metallurgical Route for the Preparation of Porous Ti and NiTi in Molten CaCl2. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 940-949.	2.1	8
20	Self-Driven Salt-Thermal Reduction Approach for the Synthesis of Cu ₂ O and AgCl–Cu ₂ O Hybrids with Superior Photocatalytic Activity. ACS Sustainable Chemistry and Engineering, 2021, 9, 5651-5660.	6.7	7
21	Mechanistic Insight into Electrochemical Synthesis of LaNi5 in a Eutectic CaCl2-NaCl Melt at 850.DEG.C Electrochemistry, 2009, 77, 663-666.	1.4	6
22	Chemically driven synthesis of Ti ³⁺ selfâ€doped Li ₄ Ti ₅ O ₁₂ spinel in molten salt. Journal of the American Ceramic Society, 2021, 104, 753-765.	3.8	6
23	Investigation of the reaction progress between stannous chloride and zirconium in molten LiCl–KCl. RSC Advances, 2015, 5, 31648-31655.	3.6	5
24	Electrochemical Synthesis of Core–Shell-Structured NbC–Fe Composite Powder for Enforcement in Low-Carbon Steel. Materials, 2017, 10, 1257.	2.9	5
25	Carbonization of transition metals in molten salts. Physical Chemistry Chemical Physics, 2019, 21, 17801-17810.	2.8	5
26	Extraction of Cu and Ni from Low-Ni Matte by a Combined Chemical Precipitation and Molten Salt Electrolysis Approach. Journal of the Electrochemical Society, 2021, 168, 063501.	2.9	5
27	Mechanical and Corrosion Properties of Porous Titanium Prepared by an Electro-Assisted Powder Metallurgy Approach. Jom, 2020, 72, 4674-4681.	1.9	4
28	Effect of a Magnetic Field on the Electrode Process of Al Electrodeposition in a [Emim]Cl-AlCl ₃ Ionic Liquid. Journal of Physical Chemistry B, 2021, 125, 13744-13751.	2.6	4