
Aravindaraj G Kannan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4329481/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effective Suppression of Dendritic Lithium Growth Using an Ultrathin Coating of Nitrogen and Sulfur Codoped Graphene Nanosheets on Polymer Separator for Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2015, 7, 23700-23707.	8.0	210
2	Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries. Scientific Reports, 2016, 6, 26332.	3.3	176
3	Improvement of Cycling Performance of Lithium–Sulfur Batteries by Using Magnesium Oxide as a Functional Additive for Trapping Lithium Polysulfide. ACS Applied Materials & Interfaces, 2016, 8, 4000-4006.	8.0	161
4	Improvement of the Cycling Performance and Thermal Stability of Lithium-Ion Cells by Double-Layer Coating of Cathode Materials with Al ₂ O ₃ Nanoparticles and Conductive Polymer. ACS Applied Materials & Interfaces, 2015, 7, 13944-13951.	8.0	151
5	Nitrogen and sulfur co-doped graphene counter electrodes with synergistically enhanced performance for dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 12232-12239.	10.3	125
6	High-energy green supercapacitor driven by ionic liquid electrolytes as an ultra-high stable next-generation energy storage device. Journal of Power Sources, 2018, 383, 102-109.	7.8	108
7	Effective Trapping of Lithium Polysulfides Using a Functionalized Carbon Nanotube-Coated Separator for Lithium–Sulfur Cells with Enhanced Cycling Stability. ACS Applied Materials & Interfaces, 2017, 9, 38445-38454.	8.0	82
8	A bi-functional metal-free catalyst composed of dual-doped graphene and mesoporous carbon for rechargeable lithium–oxygen batteries. Journal of Materials Chemistry A, 2015, 3, 18456-18465.	10.3	81
9	Performance Enhancement of Silicon Alloy-Based Anodes Using Thermally Treated Poly(amide imide) as a Polymer Binder for High Performance Lithium-Ion Batteries. Langmuir, 2016, 32, 3300-3307.	3.5	46
10	Nitrogen- and sulfur-enriched porous carbon from waste watermelon seeds for high-energy, high-temperature green ultracapacitors. Journal of Materials Chemistry A, 2018, 6, 17751-17762.	10.3	45
11	Electric double layer capacitors employing nitrogen and sulfur co-doped, hierarchically porous graphene electrodes with synergistically enhanced performance. Journal of Power Sources, 2017, 337, 65-72.	7.8	44
12	Surface enriched graphene hollow spheres towards building ultra-high power sodium-ion capacitor with long durability. Energy Storage Materials, 2020, 25, 702-713.	18.0	39
13	High Volumetric Quasiâ€Solidâ€State Sodiumâ€Ion Capacitor under High Mass Loading Conditions. Advanced Materials Interfaces, 2018, 5, 1800472.	3.7	35
14	Highly interconnected hollow graphene nanospheres as an advanced high energy and high power cathode for sodium metal batteries. Journal of Materials Chemistry A, 2018, 6, 9846-9853.	10.3	30
15	Role of Graphene Oxide as a Sacrificial Interlayer for Enhanced Photoelectrochemical Water Oxidation of Hematite Nanorods. Journal of Physical Chemistry C, 2015, 119, 19996-20002.	3.1	29
16	Silicon nanoparticles grown on a reduced graphene oxide surface as high-performance anode materials for lithium-ion batteries. RSC Advances, 2016, 6, 25159-25166.	3.6	25
17	High performance organic sodium-ion hybrid capacitors based on nano-structured disodium rhodizonate rivaling inorganic hybrid capacitors. Green Chemistry, 2018, 20, 4920-4931.	9.0	21
18	Cinnamon-Derived Hierarchically Porous Carbon as an Effective Lithium Polysulfide Reservoir in Lithium–Sulfur Batteries. Nanomaterials, 2020, 10, 1220.	4.1	18

#	Article	IF	CITATIONS
19	Sub-zero temperature thermo-electrochemical energy harvesting system using a self-heating negative temperature coefficient CNT-vanadium oxide cathode. Journal of Applied Electrochemistry, 2017, 47, 125-132.	2.9	1