Shiv Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4329378/publications.pdf

Version: 2024-02-01

236833 289141 1,685 45 25 40 citations h-index g-index papers 45 45 45 1582 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	MXenes: Emerging 2D materials for hydrogen storage. Nano Energy, 2021, 85, 105989.	8.2	132
2	Effect of Hurdle Technology in Food Preservation: A Review. Critical Reviews in Food Science and Nutrition, 2016, 56, 641-649.	5 . 4	112
3	Fabrication of Ni nanoparticles-dispersed carbon micro-nanofibers as the electrodes of a microbial fuel cell for bio-energy production. International Journal of Hydrogen Energy, 2015, 40, 1145-1153.	3.8	95
4	In situ nitrogen-doping of nickel nanoparticle-dispersed carbon nanofiber-based electrodes: Its positive effects on the performance of a microbial fuel cell. Electrochimica Acta, 2016, 190, 620-627.	2.6	91
5	Candle soot-derived carbon nanoparticles: An inexpensive and efficient electrode for microbial fuel cells. Electrochimica Acta, 2018, 264, 119-127.	2.6	91
6	Enhanced power generation using a novel polymer-coatedÂnanoparticles dispersed-carbon micro-nanofibers-based air-cathode in a membrane-less single chamber microbial fuel cell. International Journal of Hydrogen Energy, 2016, 41, 1237-1247.	3.8	74
7	Preparation of surfactant-mediated silver and copper nanoparticles dispersed in hierarchical carbon micro-nanofibers for antibacterial applications. New Biotechnology, 2013, 30, 656-665.	2.4	73
8	Carbon nanomaterials integrated molecularly imprinted polymers for biological sample analysis: A critical review. Materials Chemistry and Physics, 2020, 239, 121966.	2.0	71
9	Graphitic carbon micronanofibers asymmetrically dispersed with alumina-nickel nanoparticles: A novel electrode for mediatorless microbial fuel cells. International Journal of Hydrogen Energy, 2015, 40, 5928-5938.	3.8	63
10	Fe-nanoparticles dispersed carbon micro and nanofibers: Surfactant-mediated preparation and application to the removal of gaseous VOCs. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 399, 46-55.	2.3	57
11	Cytotoxic Evaluation of the Hierarchical Web of Carbon Micronanofibers. Industrial & Description of the Hierarchical Web of Carbon Micronanofibers. Industrial & Description of the Hierarchical Web of Carbon Micronanofibers. Industrial & Description of the Hierarchical Web of Carbon Micronanofibers. Industrial & Description of the Hierarchical Web of Carbon Micronanofibers. Industrial & Description of the Hierarchical Web of Carbon Micronanofibers. Industrial & Description of the Hierarchical Web of Carbon Micronanofibers. Industrial & Description of the Hierarchical Web of Carbon Micronanofibers. Industrial & Description of the Hierarchical Web of Carbon Micronanofibers. Industrial & Description of the Hierarchical Web of Carbon Micronanofibers. Industrial & Description of the Hierarchical Web of Carbon Micronanofibers. Industrial & Description of the Hierarchical Web of Carbon Micronanofibers. Industrial & Description of the Hierarchical Web of Carbon Micronanofibers. Industrial & Description of the Hierarchical Web of Carbon Micronanofibers. Industrial & Description of the Hierarchical Web of Carbon Micronanofibers. Industrial & Description of the Hierarchical Web of Carbon Micronanofibers. Industrial & Description of the Hierarchical Web of Carbon Micronanofibers. Industrial & Description of the Hierarchical Web of Carbon Micronanofibers. Industrial & Description of the Hierarchical Web of Carbon Micronanofibers. Industrial & Description of the Hierarchical Web of Carbon Micronanofibers. Industrial & Description of the Hierarchical Web of Carbon Micronanofibers. Industrial & Description of the Hierarchical Web of Carbon Micronanofibers. Industrial & Description of the Hierarchical Web of Carbon Micronanofibers. Industrial & Description of the Hierarchical Web of Carbon Micronanofibers. Industrial & Description of the Hierarchical Web of Carbon Micronanofibers. Industrial & Description of the Hierarchical Web of Carbon Micronanofibers. Industrial & Description of the Hierarchical Web of Carbon Micronanofibers	1.8	54
12	Improved performance of a single chamber microbial fuel cell using nitrogen-doped polymer-metal-carbon nanocomposite-based air-cathode. International Journal of Hydrogen Energy, 2017, 42, 3271-3280.	3.8	53
13	Waste candle soot derived nitrogen doped carbon dots based fluorescent sensor probe: An efficient and inexpensive route to determine Hg(II) and Fe(III) from water. Journal of Environmental Chemical Engineering, 2018, 6, 5561-5569.	3.3	53
14	Simultaneous hydrogen generation and COD reduction in a photoanode-based microbial electrolysis cell. International Journal of Hydrogen Energy, 2020, 45, 25985-25995.	3.8	45
15	Efficient bio-electroreduction of CO2 to formate on a iron phthalocyanine-dispersed CDC in microbial electrolysis system. Electrochimica Acta, 2020, 338, 135887.	2.6	43
16	Recent advancement of carbon nanomaterials engrained molecular imprinted polymer for environmental matrix. Trends in Environmental Analytical Chemistry, 2020, 27, e00092.	5. 3	42
17	Graphene quantum dots: A contemporary perspective on scope, opportunities, and sustainability. Renewable and Sustainable Energy Reviews, 2022, 157, 111993.	8.2	41
18	A nickel oxide-decorated <i>in situ</i> grown 3-D graphitic forest engrained carbon foam electrode for microbial fuel cells. Chemical Communications, 2021, 57, 879-882.	2.2	39

#	Article	IF	Citations
19	Cerium oxide-catalyzed chemical vapor deposition grown carbon nanofibers for electrochemical detection of Pb(II) and Cu(II). Journal of Environmental Chemical Engineering, 2019, 7, 103250.	3.3	38
20	An efficient antibacterial multi-scale web of carbon fibers with asymmetrically dispersed Ag–Cu bimetal nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 443, 311-319.	2.3	33
21	Multi-scale carbon micro/nanofibers-based adsorbents for protein immobilization. Materials Science and Engineering C, 2014, 38, 46-54.	3.8	31
22	Synthesis of Silicon Carbide-Derived Carbon as an Electrode of a Microbial Fuel Cell and an Adsorbent of Aqueous Cr(VI). Industrial & Engineering Chemistry Research, 2017, 56, 1233-1244.	1.8	30
23	Inexpensive, effective novel activated carbon fibers for sample cleanup: application to multipesticide residue analysis in food commodities using a QuEChERS method. Analytical and Bioanalytical Chemistry, 2018, 410, 2241-2251.	1.9	30
24	A sustainable approach towards utilization of plastic waste for an efficient electrode in microbial fuel cell applications. Journal of Hazardous Materials, 2021, 417, 125992.	6.5	29
25	Carbonâ€Based Sorbents for Hydrogen Storage: Challenges and Sustainability at Operating Conditions for Renewable Energy. ChemSusChem, 2022, 15, .	3.6	29
26	Candle soot derived carbon nanoparticles: Assessment of physico-chemical properties, cytotoxicity and genotoxicity. Chemosphere, 2019, 214, 130-135.	4.2	23
27	Candle soot derived carbon nanoparticles: An assessment of cellular and progressive toxicity using Drosophila melanogaster model. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2020, 228, 108646.	1.3	22
28	A dual photoelectrode-based double-chambered microbial fuel cell applied for simultaneous COD and Cr (VI) reduction in wastewater. International Journal of Hydrogen Energy, 2021, 46, 3160-3170.	3.8	21
29	Synthesis and characterization of 316L stainless steel foam made through two different removal process of space holder method. Manufacturing Letters, 2020, 26, 33-36.	1.1	19
30	A CeO ₂ sprinkled graphitic novel packed bed anode-based single-chamber MFC for the treatment of high organic-loaded industrial effluent in upflow continuous mode. Journal of Materials Chemistry A, 2021, 9, 23106-23116.	5.2	19
31	Advancements in spontaneous microbial desalination technology for sustainable water purification and simultaneous power generation: A review. Journal of Environmental Management, 2021, 297, 113374.	3.8	18
32	Iron nanoparticles decorated hierarchical carbon fiber forest for the magnetic solid-phase extraction of multi-pesticide residues from water samples. Chemosphere, 2021, 282, 131058.	4.2	17
33	Effective elimination of endocrine disrupting bisphenol A and S from drinking water using phenolic resin-based activated carbon fiber: Adsorption, thermodynamic and kinetic studies. Environmental Nanotechnology, Monitoring and Management, 2020, 14, 100316.	1.7	16
34	Aloe vera: A contemporary overview on scope and prospects in food preservation and packaging. Progress in Organic Coatings, 2022, 166, 106799.	1.9	16
35	CVD grown carbon nanofibers: an efficient DSPE sorbent for cleanup of multi-class pesticide residue in high fat and low water commodities by QuEChERS using GC-ECD. Mikrochimica Acta, 2020, 187, 490.	2.5	13
36	Preheated self-aligned graphene oxide for enhanced room temperature hydrogen storage. International Journal of Hydrogen Energy, 2020, 45, 19561-19566.	3.8	13

#	Article	IF	CITATIONS
37	Monitoring the pollution of river Ganga by tanneries using the multiband ground truth radiometer. ISPRS Journal of Photogrammetry and Remote Sensing, 1998, 53, 204-216.	4.9	11
38	Triacetin additive in biodiesel to reduce air pollution: a review. Environmental Chemistry Letters, 2022, 20, 1193-1224.	8.3	10
39	Significance of modification of slurry infiltration process for the precursor impregnation and pyrolysis process of SiCf/SiC composites. Journal of the European Ceramic Society, 2020, 40, 2245-2251.	2.8	6
40	Recent Advances in Micro-extraction Based Analytical Approaches for Pesticides Analysis in Environmental Samples. Energy, Environment, and Sustainability, 2020, , 281-318.	0.6	4
41	Waste candle soot derived carbon nanoparticles: A competent alternative for the management of Helicoverpa armigera. Chemosphere, 2021, 264, 128537.	4.2	3
42	Metal and Metal Matrix 2D Nanomaterial Composites: Attractive Alternatives for EMI Shielding Applications. ACS Symposium Series, 2020, , 347-373.	0.5	2
43	Catalytic Chemical Vapor Deposition Grown Carbon Nanofiber for Bio-electro-chemical and Energy Applications. Energy, Environment, and Sustainability, 2020, , 497-526.	0.6	2
44	Effect of packaging materials and temperatures on vitamin A and C of flavored aloe vera juice. Mediterranean Journal of Nutrition and Metabolism, 2012, 5, 113-117.	0.2	1
45	Carbon Nanomaterials: A Prominent Emerging Materials Towards Environmental Pollution Study and Control. Energy, Environment, and Sustainability, 2021, , 5-25.	0.6	0