
## **Roland D Cusick**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4328762/publications.pdf Version: 2024-02-01



ROLAND D CUSICK

| #  | Article                                                                                                                                                                                                                            | lF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater.<br>Applied Microbiology and Biotechnology, 2011, 89, 2053-2063.                                                                    | 1.7  | 378       |
| 2  | Energy Capture from Thermolytic Solutions in Microbial Reverse-Electrodialysis Cells. Science, 2012, 335, 1474-1477.                                                                                                               | 6.0  | 232       |
| 3  | Phosphate recovery as struvite within a single chamber microbial electrolysis cell. Bioresource Technology, 2012, 107, 110-115.                                                                                                    | 4.8  | 192       |
| 4  | Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell. Water Research, 2014, 54, 297-306.                                                                                 | 5.3  | 129       |
| 5  | Extracellular Palladium Nanoparticle Production using Geobacter sulfurreducens. ACS Sustainable<br>Chemistry and Engineering, 2013, 1, 1165-1171.                                                                                  | 3.2  | 109       |
| 6  | A review and metaâ€analysis of the agricultural potential of struvite as a phosphorus fertilizer. Soil<br>Science Society of America Journal, 2020, 84, 653-671.                                                                   | 1.2  | 80        |
| 7  | Characterizing the Impacts of Deposition Techniques on the Performance of MnO <sub>2</sub><br>Cathodes for Sodium Electrosorption in Hybrid Capacitive Deionization. Environmental Science &<br>Technology, 2017, 51, 12027-12034. | 4.6  | 72        |
| 8  | Amplifying Progress toward Multiple Development Goals through Resource Recovery from Sanitation. Environmental Science & Technology, 2017, 51, 10765-10776.                                                                        | 4.6  | 70        |
| 9  | Capacitive mixing power production from salinity gradient energy enhanced through exoelectrogen-generated ionic currents. Energy and Environmental Science, 2014, 7, 1159-1165.                                                    | 15.6 | 69        |
| 10 | Electrochemical Disinfection in Water and Wastewater Treatment: Identifying Impacts of Water<br>Quality and Operating Conditions on Performance. Environmental Science & Technology, 2021, 55,<br>3470-3482.                       | 4.6  | 67        |
| 11 | Technoeconomic Analysis of Brackish Water Capacitive Deionization: Navigating Tradeoffs between<br>Performance, Lifetime, and Material Costs. Environmental Science & Technology, 2019, 53,<br>13353-13363.                        | 4.6  | 59        |
| 12 | Elucidating the impacts of initial supersaturation and seed crystal loading on struvite precipitation kinetics, fines production, and crystal growth. Water Research, 2018, 132, 252-259.                                          | 5.3  | 51        |
| 13 | Global Sensitivity Analysis To Characterize Operational Limits and Prioritize Performance Goals of<br>Capacitive Deionization Technologies. Environmental Science & Technology, 2019, 53, 3748-3756.                               | 4.6  | 41        |
| 14 | Molecular Tuning of Redoxâ€Copolymers for Selective Electrochemical Remediation. Advanced<br>Functional Materials, 2020, 30, 2004635.                                                                                              | 7.8  | 34        |
| 15 | Minimal RED Cell Pairs Markedly Improve Electrode Kinetics and Power Production in Microbial<br>Reverse Electrodialysis Cells. Environmental Science & Technology, 2013, 47, 14518-14524.                                          | 4.6  | 33        |
| 16 | A Combined Modeling and Experimental Study Assessing the Impact of Fluid Pulsation on Charge and<br>Energy Efficiency in Capacitive Deionization. Journal of the Electrochemical Society, 2017, 164,<br>E536-E547.                 | 1.3  | 31        |
| 17 | Aligning Product Chemistry and Soil Context for Agronomic Reuse of Human-Derived Resources.<br>Environmental Science & Technology, 2019, 53, 6501-6510.                                                                            | 4.6  | 28        |
| 18 | Enhancing capacitive deionization performance with charged structural polysaccharide electrode binders. Water Research, 2019, 148, 388-397.                                                                                        | 5.3  | 28        |

**ROLAND D CUSICK** 

| #  | Article                                                                                                                                                                                                                                                                        | lF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Toward a Regional Phosphorus (Re)cycle in the US Midwest. Journal of Environmental Quality, 2019, 48, 1397-1413.                                                                                                                                                               | 1.0 | 22        |
| 20 | Re-Envisioning Sanitation As a Human-Derived Resource System. Environmental Science &<br>Technology, 2020, 54, 10446-10459.                                                                                                                                                    | 4.6 | 20        |
| 21 | Emerging investigator series: capacitive deionization for selective removal of nitrate and perchlorate:<br>impacts of ion selectivity and operating constraints on treatment costs. Environmental Science:<br>Water Research and Technology, 2020, 6, 925-934.                 | 1.2 | 18        |
| 22 | Advancing Sustainable Sanitation and Agriculture through Investments in Human-Derived Nutrient Systems. Environmental Science & 2017, Technology, 2020, 54, 9217-9227.                                                                                                         | 4.6 | 18        |
| 23 | Reducing impedance to ionic flux in capacitive deionization with Bi-tortuous activated carbon<br>electrodes coated with asymmetrically charged polyelectrolytes. Water Research X, 2019, 3, 100027.                                                                            | 2.8 | 17        |
| 24 | Developing an integrated technology-environment-economics model to simulate food-energy-water systems in Corn Belt watersheds. Environmental Modelling and Software, 2021, 143, 105083.                                                                                        | 1.9 | 16        |
| 25 | Technoâ€economic feasibility of phosphorus recovery as a coproduct from corn wet milling plants.<br>Cereal Chemistry, 2019, 96, 380-390.                                                                                                                                       | 1.1 | 14        |
| 26 | Maize and soybean response to phosphorus fertilization with blends of struvite and monoammonium phosphate. Plant and Soil, 2021, 461, 547-563.                                                                                                                                 | 1.8 | 14        |
| 27 | Recovering phosphorus as a coproduct from corn dry grind plants: A technoâ€economic evaluation.<br>Cereal Chemistry, 2020, 97, 449-458.                                                                                                                                        | 1.1 | 10        |
| 28 | Evaluating Long-Term Treatment Performance and Cost of Nutrient Removal at Water Resource<br>Recovery Facilities under Stochastic Influent Characteristics Using Artificial Neural Networks as<br>Surrogates for Plantwide Modeling. ACS ES&T Engineering, 2021, 1, 1517-1529. | 3.7 | 9         |
| 29 | Evaluating agronomic soil phosphorus tests for soils amended with struvite. Geoderma, 2021, 399, 115093.                                                                                                                                                                       | 2.3 | 9         |
| 30 | Defining Nutrient Colocation Typologies for Human-Derived Supply and Crop Demand To Advance Resource Recovery. Environmental Science & amp; Technology, 2021, 55, 10704-10713.                                                                                                 | 4.6 | 6         |
| 31 | Statistical and microbial analysis of bio-electrochemical sensors used for carbon monitoring at water resource recovery facilities. Environmental Science: Water Research and Technology, 2022, 8, 2052-2064.                                                                  | 1.2 | 6         |
| 32 | Mapping the National Phosphorus Recovery Potential from Centralized Wastewater and Corn Ethanol<br>Infrastructure. Environmental Science & Technology, 2022, 56, 8691-8701.                                                                                                    | 4.6 | 5         |
| 33 | Phosphorus fractionation and protein content control chemical phosphorus removal from corn biorefinery streams. Journal of Environmental Quality, 2020, 49, 220-227.                                                                                                           | 1.0 | 3         |
| 34 | Electrochemical Remediation: Molecular Tuning of Redox opolymers for Selective Electrochemical<br>Remediation (Adv. Funct. Mater. 52/2020). Advanced Functional Materials, 2020, 30, 2070346.                                                                                  | 7.8 | 3         |
| 35 | Modeling the Plantwide Implications of Struvite Loss from Sidestream Precipitation Reactors. ACS ES&T Engineering, 2022, 2, 874-885.                                                                                                                                           | 3.7 | 1         |
| 36 | Membrane-based electrochemical technologies: III. Selective ion removal and recovery. , 2022, , 403-444.                                                                                                                                                                       |     | 1         |