List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4328619/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The lipopolysaccharide-binding protein participating in hemocyte nodule formation in the silkwormBombyx moriis a novel member of the C-type lectin superfamily with two different tandem carbohydrate-recognition domains1. FEBS Letters, 1999, 443, 139-143.	1.3	164
2	Characterization of a Novel Î ² -Glucosidase from a Compost Microbial Metagenome with Strong Transglycosylation Activity. Journal of Biological Chemistry, 2013, 288, 18325-18334.	1.6	113
3	Generation and structural validation of a library of diverse xyloglucan-derived oligosaccharides, including an update on xyloglucan nomenclature. Carbohydrate Research, 2015, 402, 56-66.	1.1	110
4	Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation. Frontiers in Plant Science, 2013, 4, 383.	1.7	101
5	Aminopeptidase N from Bombyx Mori as a Candidate for the Receptor of Bacillus Thuringiensis Cry1Aa Toxin. FEBS Journal, 1997, 246, 652-657.	0.2	94
6	Aminopeptidase N isoforms from the midgut ofBombyx moriandPlutella xylostella- their classification and the factors that determine their binding specificity toBacillus thuringiensisCry1A toxin. FEBS Letters, 2002, 519, 215-220.	1.3	94
7	Cloning and Characterization of Two Xyloglucanases from Paenibacillus sp. Strain KM21. Applied and Environmental Microbiology, 2005, 71, 7670-7678.	1.4	74
8	Lipopolysaccharide-binding protein of Bombyx mori participates in a hemocyte-mediated defense reaction against gram-negative bacteria. Journal of Insect Physiology, 1999, 45, 853-859.	0.9	72
9	Purification, Characterization, Cloning, and Expression of a Novel Xyloglucan-specific Glycosidase, Oligoxyloglucan Reducing End-specific Cellobiohydrolase. Journal of Biological Chemistry, 2002, 277, 48276-48281.	1.6	72
10	Purification, characterization, cDNA cloning, and expression of a xyloglucan endoglucanase from Geotrichum sp. M1281. FEBS Letters, 2004, 560, 45-50.	1.3	61
11	A cadherin-like protein functions as a receptor forBacillus thuringiensisCry1Aa and Cry1Ac toxins on midgut epithelial cells ofBombyx morilarvae. FEBS Letters, 2003, 538, 29-34.	1.3	59
12	Crystal structure and identification of a key amino acid for glucose tolerance, substrate specificity, and transglycosylation activity of metagenomic βâ€glucosidase Td2F2. FEBS Journal, 2016, 283, 2340-2353.	2.2	53
13	The Structural Basis for the Exo-mode of Action in GH74 Oligoxyloglucan Reducing End-specific Cellobiohydrolase. Journal of Molecular Biology, 2007, 370, 53-62.	2.0	52
14	cDNA cloning and expression of Bacillus thuringiensis Cry1Aa toxin binding 120 kDa aminopeptidase N from Bombyx mori. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1999, 1444, 131-137.	2.4	46
15	Lipid metabolism of the oleaginous yeast Lipomyces starkeyi. Applied Microbiology and Biotechnology, 2020, 104, 6141-6148.	1.7	46
16	Tandem Repeat of a Seven-Bladed β-Propeller Domain in Oligoxyloglucan Reducing-End-Specific Cellobiohydrolase. Structure, 2004, 12, 1209-1217.	1.6	45
17	Substrate recognition by glycoside hydrolase family 74 xyloglucanase from the basidiomycete <i>Phanerochaete chrysosporium</i> . FEBS Journal, 2007, 274, 5727-5736.	2.2	45
18	Screening, identification, and characterization of a GH43 family β-xylosidase/α-arabinofuranosidase from a compost microbial metagenome. Applied Microbiology and Biotechnology, 2015, 99, 8943-8954.	1.7	44

#	Article	IF	CITATIONS
19	The impact of a single-nucleotide mutation of bgl2 on cellulase induction in a Trichoderma reesei mutant. Biotechnology for Biofuels, 2015, 8, 230.	6.2	38
20	Key amino acid residues for the endoâ€processive activity of GH74 xyloglucanase. FEBS Letters, 2014, 588, 1731-1738.	1.3	32
21	Screening, identification, and characterization of a novel saccharide-stimulated β-glycosidase from a soil metagenomic library. Applied Microbiology and Biotechnology, 2017, 101, 633-646.	1.7	32
22	Bacillus thuringiensisCry1Aa toxin-binding region ofBombyx moriaminopeptidase N. FEBS Letters, 1999, 463, 221-224.	1.3	30
23	Characterization of an Endo-Processive-Type Xyloglucanase Having a β-1,4-Glucan-Binding Module and an Endo-Type Xyloglucanase from Streptomyces avermitilis. Applied and Environmental Microbiology, 2012, 78, 7939-7945.	1.4	29
24	GH30 Glucuronoxylan-Specific Xylanase from Streptomyces turgidiscabies C56. Applied and Environmental Microbiology, 2018, 84, .	1.4	29
25	Acaloleptins A: Inducible antibacterial peptides from larvae of the beetle,Acalolepta luxuriosa. , 1999, 40, 88-98.		28
26	A system for the directed evolution of the insecticidal protein from Bacillus thuringiensis. Molecular Biotechnology, 2007, 36, 90-101.	1.3	27
27	Bacillus thuringiensis insecticidal Cry1Aa toxin binds to a highly conserved region of aminopeptidase N in the host insect leading to its evolutionary success. BBA - Proteins and Proteomics, 1999, 1432, 57-63.	2.1	25
28	Screening, identification, and characterization of α-xylosidase from a soil metagenome. Journal of Bioscience and Bioengineering, 2016, 122, 393-399.	1.1	25
29	The crystal structure of a xyloglucanâ€specific endoâ€Î²â€1,4â€glucanase from <i>Geotrichum</i> sp. M128 xyloglucanase reveals a key amino acid residue for substrate specificity. FEBS Journal, 2009, 276, 5094-5100.	2.2	24
30	Identification of the Gene Encoding Isoprimeverose-producing Oligoxyloglucan Hydrolase in Aspergillus oryzae. Journal of Biological Chemistry, 2016, 291, 5080-5087.	1.6	24
31	Crystal structure of metagenomic β-xylosidase/ α-l-arabinofuranosidase activated by calcium. Journal of Biochemistry, 2017, 162, 173-181.	0.9	22
32	Binding of Phylogenetically Distant Bacillus thuringiensis Cry Toxins to a Bombyx mori Aminopeptidase N Suggests Importance of Cry Toxin's Conserved Structure in Receptor Binding. Current Microbiology, 1999, 39, 14-20.	1.0	20
33	Screening, Purification and Characterization of a Prokaryotic Isoprimeverose-producing Oligoxyloglucan Hydrolase from Oerskovia sp. Y1. Journal of Applied Glycoscience (1999), 2007, 54, 91-94.	0.3	20
34	A novel electroporation procedure for highly efficient transformation of Lipomyces starkeyi. Journal of Microbiological Methods, 2020, 169, 105816.	0.7	19
35	Rational protein design for thermostabilization of glycoside hydrolases based on structural analysis. Applied Microbiology and Biotechnology, 2018, 102, 8677-8684.	1.7	16
36	Isolation and characterization of Lipomyces starkeyi mutants with greatly increased lipid productivity following UV irradiation. Journal of Bioscience and Bioengineering, 2021, 131, 613-621.	1.1	15

#	Article	IF	CITATIONS
37	Improvement of thermostability and activity of Trichoderma reesei endo-xylanase Xyn III on insoluble substrates. Applied Microbiology and Biotechnology, 2016, 100, 8043-8051.	1.7	14
38	Improved thermostability of a metagenomic glucose-tolerant β-glycosidase based on its X-ray crystal structure. Applied Microbiology and Biotechnology, 2017, 101, 8353-8363.	1.7	14
39	Cooperation between βâ€galactosidase and an isoprimeveroseâ€producing oligoxyloglucan hydrolase is key for xyloglucan degradation in <i>AspergillusÂoryzae</i> . FEBS Journal, 2019, 286, 3182-3193.	2.2	14
40	Identification and characterization of α-xylosidase involved in xyloglucan degradation in Aspergillus oryzae. Applied Microbiology and Biotechnology, 2020, 104, 201-210.	1.7	14
41	Identification and characterization of two xyloglucan-specific endo-1,4-glucanases in Aspergillus oryzae. Applied Microbiology and Biotechnology, 2020, 104, 8761-8773.	1.7	14
42	Cloning and Expression of Isoprimeverose-producing Oligoxyloglucan Hydrolase from Actinomycetes Species, Oerskovia sp. Y1. Journal of Applied Glycoscience (1999), 2012, 59, 83-88.	0.3	13
43	GH74 Xyloglucanases: Structures and Modes of Activity. Trends in Glycoscience and Glycotechnology, 2016, 28, E63-E70.	0.0	13
44	Diversity of extradiol dioxygenases in aromatic-degrading microbial community explored using both culture-dependent and culture-independent approaches. FEMS Microbiology Ecology, 2014, 90, n/a-n/a.	1.3	12
45	Identification and characterization of Δ12 and Δ12/Δ15 bifunctional fatty acid desaturases in the oleaginous yeast Lipomyces starkeyi. Applied Microbiology and Biotechnology, 2018, 102, 8817-8826.	1.7	10
46	Crystal structure and substrate recognition mechanism of Aspergillus oryzae isoprimeverose-producing enzyme. Journal of Structural Biology, 2019, 205, 84-90.	1.3	10
47	Identification and characterization of two fatty acid elongases in Lipomyces starkeyi. Applied Microbiology and Biotechnology, 2020, 104, 2537-2544.	1.7	9
48	Characterization of xylan in the early stages of secondary cell wall formation in tobacco bright yellow-2 cells. Carbohydrate Polymers, 2017, 176, 381-391.	5.1	7
49	Crystallization and preliminary X-ray crystallographic study on a xyloglucan-specific exo-β-glycosidase, oligoxyloglucan reducing-end specific cellobiohydrolase. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 1838-1839.	2.5	6
50	Aglycone specificity of <i>Escherichia coli</i> αâ€xylosidase investigated by transxylosylation. FEBS Journal, 2007, 274, 6074-6084.	2.2	6
51	Whole-Genome Sequence of Monascus purpureus GB-01, an Industrial Strain for Food Colorant Production. Microbiology Resource Announcements, 2019, 8, .	0.3	6
52	A novel isoprimeveroseâ€producing enzyme from PhaeoacremoniumÂminimum is active with low concentrations of xyloglucan oligosaccharides. FEBS Open Bio, 2019, 9, 92-100.	1.0	6
53	Enzymatic degradation of xyloglucans by Aspergillus species: a comparative view of this genus. Applied Microbiology and Biotechnology, 2021, 105, 2701-2711.	1.7	5
54	Characterization of an extracellular α-xylosidase involved in xyloglucan degradation in Aspergillus oryzae. Applied Microbiology and Biotechnology, 2022, 106, 675-687.	1.7	5

#	Article	IF	CITATIONS
55	Functions and Structures of Xyloglucan Hydrolases Belonging to Glycoside Hydrolase Family 74. Journal of Applied Glycoscience (1999), 2005, 52, 169-176.	0.3	3
56	Structural basis for the catalytic mechanism of the glycoside hydrolase family 3 isoprimeveroseâ€producing oligoxyloglucan hydrolase from <i>Aspergillus oryzae</i> . FEBS Letters, 2022, 596, 1944-1954.	1.3	3
57	Substrate Recognition of Escherichia coli Yicl (.ALPHAXylosidase). Journal of Applied Glycoscience (1999), 2008, 55, 111-118.	0.3	2
58	Further Structural Study of the Xyloglucanase-derived Eggplant Xyloglucan Oligo-saccharides. Journal of Applied Glycoscience (1999), 2010, 57, 265-268.	0.3	2
59	Identification and characterization of Pseudozyma antarctica Δ12 fatty acid desaturase and its utilization for the production of polyunsaturated fatty acids. Journal of Bioscience and Bioengineering, 2020, 130, 604-609.	1.1	1
60	GH74 Xyloglucanases: Structures and Modes of Activity. Trends in Glycoscience and Glycotechnology, 2016, 28, J63-J70.	0.0	1
61	Crystal structure of metagenomic β-glycosidase MeBglD2 in complex with various saccharides. Applied Microbiology and Biotechnology, 2022, 106, 4539-4551.	1.7	1
62	Selective fluorescence labeling: time-lapse enzyme visualization during sugarcane hydrolysis. Journal of Wood Science, 2019, 65, .	0.9	0