Franco Van de Velde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4328519/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioactive Compounds and Antioxidant Capacity of Camarosa and Selva Strawberries (Fragaria x) Tj ETQq1 1 0.784	1314 rgBT 1.9	/Qyerlock
2	Anti-inflammatory and wound healing properties of polyphenolic extracts from strawberry and blackberry fruits. Food Research International, 2019, 121, 453-462.	2.9	70
3	Quantitative comparison of phytochemical profile, antioxidant, and anti-inflammatory properties of blackberry fruits adapted to Argentina. Journal of Food Composition and Analysis, 2016, 47, 82-91.	1.9	50
4	Sous-Vide as a Technique for Preparing Healthy and High-Quality Vegetable and Seafood Products. Foods, 2020, 9, 1537.	1.9	42
5	Optimization and Validation of a UV–HPLC Method for Vitamin C Determination in Strawberries (Fragaria ananassa Duch.), Using Experimental Designs. Food Analytical Methods, 2012, 5, 1097-1104.	1.3	37
6	Bioaccessibility analysis of anthocyanins and ellagitannins from blackberry at simulated gastrointestinal and colonic levels. Journal of Food Composition and Analysis, 2018, 72, 22-31.	1.9	37
7	Determination of Phenolic Compounds in Strawberries (Fragaria ananassa Duch) by High Performance Liquid Chromatography with Diode Array Detection. Food Analytical Methods, 2013, 6, 227-237.	1.3	33
8	Extracts from strawberry by-products rich in phenolic compounds reduce the activity of apple polyphenol oxidase. LWT - Food Science and Technology, 2020, 133, 110097.	2.5	26
9	Optimization of strawberry disinfection by fogging of a mixture of peracetic acid and hydrogen peroxide based on microbial reduction, color and phytochemicals retention. Food Science and Technology International, 2016, 22, 485-495.	1.1	22
10	Gastrointestinal and colonic in vitro bioaccessibility of Î ³ -aminobutiric acid (GABA) and phenolic compounds from novel fermented sorghum food. LWT - Food Science and Technology, 2020, 130, 109664.	2.5	21
11	Impact of a new postharvest disinfection method based on peracetic acid fogging on the phenolic profile of strawberries. Postharvest Biology and Technology, 2016, 117, 197-205.	2.9	20
12	Optimisation of the peracetic acid washing disinfection of freshâ€cut strawberries based on microbial load reduction and bioactive compounds retention. International Journal of Food Science and Technology, 2014, 49, 634-640.	1.3	18
13	Changes due to high oxygen and high carbon dioxide atmospheres on the general quality and the polyphenolic profile of strawberries. Postharvest Biology and Technology, 2019, 148, 49-57.	2.9	18
14	Modeling the Impact of the Type of Cutting and Storage Temperature on the Bioactive Compound Content, Phenylpropanoid Metabolism Enzymes and Quality Attributes of Fresh-Cut Strawberries. Food and Bioprocess Technology, 2018, 11, 96-109.	2.6	15
15	Effect of enriched O2 and CO2 atmospheres on the overall quality and the bioactive potential of fresh blackberries. Postharvest Biology and Technology, 2020, 164, 111166.	2.9	15
16	Strawberry agro-industrial by-products as a source of bioactive compounds: effect of cultivar on the phenolic profile and the antioxidant capacity. Bioresources and Bioprocessing, 2021, 8, .	2.0	15
17	Modelling changes in anthocyanins, total vitamin C and colour as a consequence of peracetic acid washing disinfection of two cultivars of strawberries for freshâ€cut processing. International Journal of Food Science and Technology, 2013, 48, 954-961.	1.3	12
18	Changes in the bioactive properties of strawberries caused by the storage in oxygen―and carbon dioxideâ€enriched atmospheres. Food Science and Nutrition, 2019, 7, 2527-2536.	1.5	9

#	Article	IF	CITATIONS
19	Extraction of phenolic compounds from the shells of pecan nuts with cytotoxic activity through apoptosis against the colon cancer cell line HTâ€⊋9. Journal of Food Science, 2021, 86, 5409-5423.	1.5	7
20	Determination of Thiamine in Wheat Flours Using a Validated Isocratic HPLC-Fluorescence Method Previously Optimized by Box–Behnken Design. Food Analytical Methods, 2014, 7, 828-835.	1.3	5
21	Kinetic modeling of the changes in bioactive compounds and quality attributes of fresh-cut strawberries stored in controlled atmospheres with high oxygen alone or with carbon dioxide. Postharvest Biology and Technology, 2022, 190, 111947.	2.9	5
22	Health Potential and Physicochemical Attributes after Minimal Processing and during Refrigerated Storage of Orange (<i>Citrus sinensis</i> L., Osbeck). International Journal of Fruit Science, 2013, 13, 285-298.	1.2	3
23	Intestinal and colonic bioaccessibility of phenolic compounds from fruit smoothies as affected by the thermal processing and the storage conditions. Food Research International, 2022, 155, 111086.	2.9	3