Marta Pojo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4328458/publications.pdf

Version: 2024-02-01

933264 794469 403 23 10 19 citations h-index g-index papers 23 23 23 814 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	<i>PIK3CA</i> Mutations in Diffuse Gliomas: An Update on Molecular Stratification, Prognosis, Recurrence, and Aggressiveness. Clinical Medicine Insights: Oncology, 2022, 16, 117955492110688.	0.6	4
2	<i>Cadherinâ€3</i> is a novel oncogenic biomarker with prognostic value in glioblastoma. Molecular Oncology, 2022, 16, 2611-2631.	2.1	4
3	Chronic Stress Does Not Influence the Survival of Mouse Models of Glioblastoma. Frontiers in Oncology, 2022, 12, 856210.	1.3	2
4	Unraveling the Relevance of ARL GTPases in Cutaneous Melanoma Prognosis through Integrated Bioinformatics Analysis. International Journal of Molecular Sciences, 2021, 22, 9260.	1.8	4
5	The Impact of Olive Oil Compounds on the Metabolic Reprogramming of Cutaneous Melanoma Cell Models. Molecules, 2021, 26, 289.	1.7	6
6	Nobiletin Alone or in Combination with Cisplatin Decreases the Viability of Anaplastic Thyroid Cancer Cell Lines. Nutrition and Cancer, 2020, 72, 352-363.	0.9	13
7	Take Advantage of Glutamine Anaplerosis, the Kernel of the Metabolic Rewiring in Malignant Gliomas. Biomolecules, 2020, 10, 1370.	1.8	12
8	Subversion of Ras Small GTPases in Cutaneous Melanoma Aggressiveness. Frontiers in Cell and Developmental Biology, 2020, 8, 575223.	1.8	5
9	High-Throughput Sequencing Identifies 3 Novel Susceptibility Genes for Hereditary Melanoma. Genes, 2020, 11, 403.	1.0	14
10	Melanoma Metabolism: Cell Survival and Resistance to Therapy. Advances in Experimental Medicine and Biology, 2020, 1219, 203-223.	0.8	15
11	Establishment and characterization of a new patient-derived anaplastic thyroid cancer cell line (C3948), obtained through fine-needle aspiration cytology. Endocrine, 2019, 66, 288-300.	1.1	2
12	Clinical insights gained by refining the 2016 WHO classification of diffuse gliomas with: EGFR amplification, TERT mutations, PTEN deletion and MGMT methylation. BMC Cancer, 2019, 19, 968.	1.1	55
13	The efficacy of HRAS and CDK4/6 inhibitors in anaplastic thyroid cancer cell lines. Journal of Endocrinological Investigation, 2019, 42, 527-540.	1.8	17
14	The long non-coding RNA <i>HOTAIR</i> is transcriptionally activated by HOXA9 and is an independent prognostic marker in patients with malignant glioma. Oncotarget, 2018, 9, 15740-15756.	0.8	28
15	<i>WNT6</i> is a novel oncogenic prognostic biomarker in human glioblastoma. Theranostics, 2018, 8, 4805-4823.	4.6	35
16	Effects of the functional HOTAIR rs920778 and rs12826786 genetic variants in glioma susceptibility and patient prognosis. Journal of Neuro-Oncology, 2017, 132, 27-34.	1.4	36
17	Hypoxia-mediated upregulation of MCT1 expression supports the glycolytic phenotype of glioblastomas. Oncotarget, 2016, 7, 46335-46353.	0.8	81
18	Transcriptional profiling of HOXA9-regulated genes in human glioblastoma cell models. Genomics Data, 2015, 5, 54-58.	1.3	11

Marta Pojo

#	Article	IF	CITATIONS
19	A transcriptomic signature mediated by HOXA9 promotes human glioblastoma initiation, aggressiveness and resistance to temozolomide. Oncotarget, 2015, 6, 7657-7674.	0.8	46
20	In vitro evaluation of the cytotoxicity and cellular uptake of CMCht/PAMAM dendrimer nanoparticles by glioblastoma cell models. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	8
21	Mechanisms of Aggressiveness in Glioblastoma: Prognostic and Potential Therapeutic Insights. , 2013, , .		O
22	Molecular Hallmarks of Gliomas., 0,,.		5
23	Inhibition of hRAS and CDK4/6 leads to an antiproliferative activity, blocks cell cycle and induces cell death in anaplastic thyroid cancer cell lines. Endocrine Abstracts, 0, , .	0.0	O