Fuqiang Huang

List of Publications by Citations

Source: https://exaly.com/author-pdf/4328375/fuqiang-huang-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

273	11,921	53	103
papers	citations	h-index	g-index
304	14,206 ext. citations	9.5	6.72
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
273	Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. <i>Science</i> , 2015 , 350, 1508-13	33.3	1530
272	Black titanium dioxide (TiO2) nanomaterials. <i>Chemical Society Reviews</i> , 2015 , 44, 1861-85	58.5	958
271	Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. <i>Energy and Environmental Science</i> , 2013 , 6, 3007	35.4	543
270	H-Doped Black Titania with Very High Solar Absorption and Excellent Photocatalysis Enhanced by Localized Surface Plasmon Resonance. <i>Advanced Functional Materials</i> , 2013 , 23, 5444-5450	15.6	532
269	Core-shell nanostructured "black" rutile titania as excellent catalyst for hydrogen production enhanced by sulfur doping. <i>Journal of the American Chemical Society</i> , 2013 , 135, 17831-8	16.4	370
268	Effective nonmetal incorporation in black titania with enhanced solar energy utilization. <i>Energy and Environmental Science</i> , 2014 , 7, 967	35.4	317
267	Coexistence of superconductivity and antiferromagnetism in (Li0.8Fe0.2)OHFeSe. <i>Nature Materials</i> , 2015 , 14, 325-9	27	264
266	Highly Conductive Porous Graphene/Ceramic Composites for Heat Transfer and Thermal Energy Storage. <i>Advanced Functional Materials</i> , 2013 , 23, 2263-2269	15.6	240
265	Constructing Black Titania with Unique Nanocage Structure for Solar Desalination. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 31716-31721	9.5	210
264	Progress in Black Titania: A New Material for Advanced Photocatalysis. <i>Advanced Energy Materials</i> , 2016 , 6, 1600452	21.8	193
263	A facile preparation route for boron-doped graphene, and its CdTe solar cell application. <i>Energy and Environmental Science</i> , 2011 , 4, 862-865	35.4	186
262	A Robust and Conductive Black Tin Oxide Nanostructure Makes Efficient Lithium-Ion Batteries Possible. <i>Advanced Materials</i> , 2017 , 29, 1700136	24	173
261	Hydrogenated Blue Titania for Efficient Solar to Chemical Conversions: Preparation, Characterization, and Reaction Mechanism of CO2 Reduction. <i>ACS Catalysis</i> , 2018 , 8, 1009-1017	13.1	164
260	A new tubular graphene form of a tetrahedrally connected cellular structure. <i>Advanced Materials</i> , 2015 , 27, 5943-9	24	163
259	Direct growth of few-layer graphene films on SiO2 substrates and their photovoltaic applications. <i>Journal of Materials Chemistry</i> , 2012 , 22, 411-416		154
258	Well-Dispersed Ruthenium in Mesoporous Crystal TiO as an Advanced Electrocatalyst for Hydrogen Evolution Reaction. <i>Journal of the American Chemical Society</i> , 2018 , 140, 5719-5727	16.4	152
257	Black brookite titania with high solar absorption and excellent photocatalytic performance. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 9650	13	150

(2016-2014)

256	Enhanced electron transport in Nb-doped TiO2 nanoparticles via pressure-induced phase transitions. <i>Journal of the American Chemical Society</i> , 2014 , 136, 419-26	16.4	139
255	Highly conductive and flexible paper of 1D silver-nanowire-doped graphene. <i>ACS Applied Materials & Amp; Interfaces</i> , 2013 , 5, 1408-13	9.5	136
254	Observation of Superconductivity in Tetragonal FeS. <i>Journal of the American Chemical Society</i> , 2015 , 137, 10148-51	16.4	134
253	Atomic-Sized Pores Enhanced Electrocatalysis of TaS Nanosheets for Hydrogen Evolution. <i>Advanced Materials</i> , 2016 , 28, 8945-8949	24	121
252	Rational design of cobaltdhromium layered double hydroxide as a highly efficient electrocatalyst for water oxidation. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 11292-11298	13	116
251	Conductive Carbon Nitride for Excellent Energy Storage. <i>Advanced Materials</i> , 2017 , 29, 1701674	24	112
250	New layered materials: syntheses, structures, and optical and magnetic properties of CsGdZnSe3, CsZrCuSe3, CsUCuSe3, and BaGdCuSe3. <i>Inorganic Chemistry</i> , 2001 , 40, 5123-6	5.1	107
249	Highly conductive three-dimensional graphene for enhancing the rate performance of LiFePO4 cathode. <i>Journal of Power Sources</i> , 2012 , 203, 130-134	8.9	103
248	Novel Black BiVO4/TiO2 Photoanode with Enhanced Photon Absorption and Charge Separation for Efficient and Stable Solar Water Splitting. <i>Advanced Energy Materials</i> , 2019 , 9, 1901287	21.8	92
247	Structure-dependent photocatalytic activities of MWO4 (M = Ca, Sr, Ba). <i>Journal of Molecular Catalysis A</i> , 2009 , 302, 54-58		92
246	Structure Re-determination and Superconductivity Observation of Bulk 1T MoS. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 1232-1235	16.4	88
245	Photocatalytic activities of M2Sb2O7 (M=Ca, Sr) for degrading methyl orange. <i>Applied Catalysis A: General</i> , 2006 , 313, 218-223	5.1	87
244	New Graphene Form of Nanoporous Monolith for Excellent Energy Storage. <i>Nano Letters</i> , 2016 , 16, 349	-54 .5	86
243	Large-scale preparation of highly conductive three dimensional graphene and its applications in CdTe solar cells. <i>Journal of Materials Chemistry</i> , 2011 , 21, 17366		84
242	Superconductivity in LiFeO2Fe2Se2 with anti-PbO-type spacer layers. <i>Physical Review B</i> , 2014 , 89,	3.3	83
241	Improved visible-light photocatalysis of nano-Bi2Sn2O7 with dispersed s-bands. <i>Journal of Materials Chemistry</i> , 2011 , 21, 3872		82
240	Thermal decomposition of bismuth oxysulfide from photoelectric Bi2O2S to superconducting Bi4O4S3. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 4442-8	9.5	79
239	Hydrogenated blue titania with high solar absorption and greatly improved photocatalysis. Nanoscale, 2016 , 8, 4705-12	7.7	74

238	Controlled Phase Evolution from Co Nanochains to CoO Nanocubes and Their Application as OER Catalysts. <i>ACS Energy Letters</i> , 2017 , 2, 1208-1213	20.1	73
237	Enhanced specific capacitance by a new dual redox-active electrolyte in activated carbon-based supercapacitors. <i>Carbon</i> , 2019 , 143, 300-308	10.4	69
236	Nickel catalyst stabilization via graphene encapsulation for enhanced methanation reaction. Journal of Catalysis, 2016 , 334, 42-51	7.3	68
235	Doped, conductive SiO nanoparticles for large microwave absorption. <i>Light: Science and Applications</i> , 2018 , 7, 87	16.7	68
234	Metastable MoS: Crystal Structure, Electronic Band Structure, Synthetic Approach and Intriguing Physical Properties. <i>Chemistry - A European Journal</i> , 2018 , 24, 15942-15954	4.8	67
233	Black nanostructured Nb2O5 with improved solar absorption and enhanced photoelectrochemical water splitting. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 11830-11837	13	66
232	Gray TiO2 nanowires synthesized by aluminum-mediated reduction and their excellent photocatalytic activity for water cleaning. <i>Chemistry - A European Journal</i> , 2013 , 19, 13313-6	4.8	64
231	Red, green and blue emissions coexistence in white-light-emitting Ca11(SiO4)4(BO3)2:Ce3+,Eu2+,Eu3+ phosphor. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 5892	7.1	63
230	Enhanced Superconductivity in Restacked TaS Nanosheets. <i>Journal of the American Chemical Society</i> , 2017 , 139, 4623-4626	16.4	62
229	Copper nanodot-embedded graphene urchins of nearly full-spectrum solar absorption and extraordinary solar desalination. <i>Nano Energy</i> , 2018 , 53, 425-431	17.1	62
228	Observation of superconductivity in 1T?-MoS2 nanosheets. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 10855-10860	7.1	60
227	Low-temperature rapid synthesis of high-quality pristine or boron-doped graphenevia Wurtz-type reductive coupling reaction. <i>Journal of Materials Chemistry</i> , 2011 , 21, 10685		60
226	Black Titania for Superior Photocatalytic Hydrogen Production and Photoelectrochemical Water Splitting. <i>ChemCatChem</i> , 2015 , 7, 2614-2619	5.2	59
225	In situ grown graphene-encapsulated germanium nanowires for superior lithium-ion storage properties. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 8897	13	58
224	Sr Cd Sb O S: Strong SHG Response Activated by Highly Polarizable Sb/O/S Groups. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 8078-8081	16.4	56
223	OrganicIhorganic halide perovskite based solar cells Irevolutionary progress in photovoltaics. <i>Inorganic Chemistry Frontiers</i> , 2015 , 2, 315-335	6.8	55
222	Study of LiFePO4 cathode modified by graphene sheets for high-performance lithium ion batteries. <i>Electrochimica Acta</i> , 2013 , 88, 414-420	6.7	55
221	An electron injection promoted highly efficient electrocatalyst of FeNi3@GR@Fe-NiOOH for oxygen evolution and rechargeable metallir batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 7762-7	7721	55

(2017-2016)

220	Gray Ta2O5 Nanowires with Greatly Enhanced Photocatalytic Performance. <i>ACS Applied Materials</i> & Samp; Interfaces, 2016 , 8, 122-7	9.5	53
219	Structural Determination and Nonlinear Optical Properties of New 1T?-Type MoS Compound. Journal of the American Chemical Society, 2019 , 141, 790-793	16.4	51
218	Toward large-scale water treatment using nanomaterials. <i>Nano Today</i> , 2019 , 27, 11-27	17.9	48
217	Hydrogen plasma reduced black TiO2B nanowires for enhanced photoelectrochemical water-splitting. <i>Journal of Power Sources</i> , 2016 , 325, 697-705	8.9	46
216	Discovery of Superconductivity in 2M WS with Possible Topological Surface States. <i>Advanced Materials</i> , 2019 , 31, e1901942	24	44
215	Evidence of anisotropic Majorana bound states in 2M-WS2. <i>Nature Physics</i> , 2019 , 15, 1046-1051	16.2	44
214	Direct synthesis of ethanol via CO hydrogenation using supported gold catalysts. <i>Chemical Communications</i> , 2016 , 52, 14226-14229	5.8	43
213	Nickel nitrideBlack phosphorus heterostructure nanosheets for boosting the electrocatalytic activity towards the oxygen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 22063-22069	13	41
212	Nitrogen and oxygen dual-doped carbon nanohorn for electrochemical capacitors. <i>Carbon</i> , 2017 , 118, 511-516	10.4	40
211	Novel antimonate photocatalysts MSb2O6 (M = Ca, Sr and Ba): a correlation between packing factor and photocatalytic activity. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 10047-52	3.6	39
210	Controllable reduced black titania with enhanced photoelectrochemical water splitting performance. <i>Dalton Transactions</i> , 2017 , 46, 1047-1051	4.3	38
209	Synthesis, Crystal Structure, and Photoelectric Properties of a New Layered Bismuth Oxysulfide. <i>Inorganic Chemistry</i> , 2015 , 54, 5768-73	5.1	38
208	Ruthenium-Doped Cobalt-Chromium Layered Double Hydroxides for Enhancing Oxygen Evolution through Regulating Charge Transfer. <i>Small</i> , 2020 , 16, e1905328	11	37
207	Ti-Promoted High Oxygen-Reduction Activity of Pd Nanodots Supported by Black Titania Nanobelts. <i>ACS Applied Materials & amp; Interfaces</i> , 2016 , 8, 27654-27660	9.5	37
206	Efficient Reduction of CO to CO Using Cobalt-Cobalt Oxide Core-Shell Catalysts. <i>Chemistry - A European Journal</i> , 2018 , 24, 2157-2163	4.8	36
205	A one-pot method to grow pyrochlore H4Nb2O7-octahedron-based photocatalyst. <i>Journal of Materials Chemistry</i> , 2010 , 20, 1942		36
204	Black strontium titanate nanocrystals of enhanced solar absorption for photocatalysis. CrystEngComm, 2015 , 17, 7528-7534	3.3	35
203	Efficient Conversion of CO2 to Methane Photocatalyzed by Conductive Black Titania. <i>ChemCatChem</i> , 2017 , 9, 4389-4396	5.2	34

202	Controllable synthesis of silver cyanamide as a new semiconductor photocatalyst under visible-light irradiation. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 7942	13	33
201	Structure Re-determination and Superconductivity Observation of Bulk 1T MoS2. <i>Angewandte Chemie</i> , 2018 , 130, 1246-1249	3.6	33
200	In Situ Growth Enabling Ideal Graphene Encapsulation upon Mesocrystalline MTiO3 (M = Ni, Co, Fe) Nanorods for Stable Lithium Storage. <i>ACS Energy Letters</i> , 2017 , 2, 659-663	20.1	32
199	Nano Titanium Monoxide Crystals and Unusual Superconductivity at 11 K. <i>Advanced Materials</i> , 2018 , 30, 1706240	24	32
198	Biomolecule-assisted route to prepare titania mesoporous hollow structures. <i>Chemistry - A European Journal</i> , 2011 , 17, 11535-41	4.8	32
197	"Electron-Sharing" Mechanism Promotes Co@CoO/CNTs Composite as the High-Capacity Anode Material of Lithium-Ion Battery. <i>ACS Applied Materials & Samp; Interfaces</i> , 2018 , 10, 43641-43649	9.5	31
196	Efficient catalyst of defective CeO2N and few-layer carbon hybrid for oxygen reduction reaction. Journal of Alloys and Compounds, 2016 , 688, 613-618	5.7	30
195	Bi3+-doped CH3NH3PbI3: Red-shifting absorption edge and longer charge carrier lifetime. <i>Journal of Alloys and Compounds</i> , 2017 , 695, 555-560	5.7	29
194	The production of large bilayer hexagonal graphene domains by a two-step growth process of segregation and surface-catalytic chemical vapor deposition. <i>Carbon</i> , 2012 , 50, 2703-2709	10.4	29
193	Black rutile (Sn, Ti)O2 initializing electrochemically reversible Sn nanodots embedded in amorphous lithiated titania matrix for efficient lithium storage. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 15698-15	764	28
192	Synthesis of Highly Stable Graphene-Encapsulated Iron Nanoparticles for Catalytic Syngas Conversion. <i>Particle and Particle Systems Characterization</i> , 2015 , 32, 29-34	3.1	27
191	A three-dimensional elastic macroscopic graphene network for thermal management application. Journal of Materials Chemistry A, 2014 , 2, 18215-18218	13	26
190	Synthesis, crystal structure, electronic structure, and photoelectric response properties of KCu2SbS3. <i>Dalton Transactions</i> , 2016 , 45, 3473-9	4.3	25
189	Efficient Photocatalytic Reduction of CO2 Using Carbon-Doped Amorphous Titanium Oxide. <i>ChemCatChem</i> , 2018 , 10, 3854-3861	5.2	25
188	New layered materials: syntheses, structures, and optical properties of K(2)TiCu(2)S(4), Rb(2)TiCu(2)S(4), Rb(2)TiaAg(2)S(4), Cs(2)TiAg(2)SS(4), and Cs(2)TiCu(2)Se(4). <i>Inorganic Chemistry</i> , 2001 , 40, 2602-7	5.1	25
187	Synthesis, Structure, Multiband Optical, and Electrical Conductive Properties of a 3D Open Cubic Framework Based on [Cu8Sn6S24](z-) Clusters. <i>Inorganic Chemistry</i> , 2015 , 54, 5301-8	5.1	24
186	Effect of structural packing on the luminescence properties in tungsten bronze compounds M2KNb5O15 (M=Ca, Sr, Ba). <i>Journal of Solid State Chemistry</i> , 2012 , 192, 182-185	3.3	24
185	Recent progress and perspectives of defective oxide anode materials for advanced lithium ion battery. <i>EnergyChem</i> , 2020 , 2, 100045	36.9	24

(2019-2017)

184	High-quality single-layer nanosheets of MS2 (M = Mo, Nb, Ta, Ti) directly exfoliated from AMS2 (A = Li, Na, K) crystals. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 5977-5983	7.1	23	
183	Intrinsic Electron Localization of Metastable MoS Boosts Electrocatalytic Nitrogen Reduction to Ammonia. <i>Advanced Materials</i> , 2021 , 33, e2007509	24	22	
182	Enhanced Superconductivity in Rock-Salt TiO. ACS Omega, 2017, 2, 1036-1039	3.9	21	
181	Atomic Pillar Effect in PdxNbS2 To Boost Basal Plane Activity for Stable Hydrogen Evolution. <i>Chemistry of Materials</i> , 2019 , 31, 4726-4731	9.6	21	
180	Superconductivity and phase diagram of (Li0.8Fe0.2)OHFeSe1⊠Sx. <i>Physical Review B</i> , 2014 , 90,	3.3	21	
179	Orthorhombic NbO for Durable High-Rate Anode of Li-Ion Batteries. <i>IScience</i> , 2020 , 23, 100767	6.1	21	
178	Superconductivity in the metastable 1T? and 1T?? phases of MoS2 crystals. <i>Physical Review B</i> , 2018 , 98,	3.3	21	
177	Boron Embedded in Metal Iron Matrix as a Novel Anode Material of Excellent Performance. <i>Advanced Materials</i> , 2018 , 30, e1801409	24	20	
176	CoN loaded N-doped carbon as an efficient bifunctional oxygen electrocatalyst for a Zn-air battery. <i>Nanoscale</i> , 2020 , 12, 6089-6095	7.7	19	
175	Renewable P-type zeolite for superior absorption of heavy metals: Isotherms, kinetics, and mechanism. <i>Science of the Total Environment</i> , 2020 , 726, 138535	10.2	19	
174	Suppression of graphene nucleation by plasma treatment of Cu foil for the rapid growth of large-size single-crystal graphene. <i>Carbon</i> , 2019 , 147, 51-57	10.4	18	
173	Molten salt assisted synthesis of black titania hexagonal nanosheets with tuneable phase composition and morphology. <i>RSC Advances</i> , 2015 , 5, 85928-85932	3.7	18	
172	Honeycomb RhI Flakes with High Environmental Stability for Optoelectronics. <i>Advanced Materials</i> , 2020 , 32, e2001979	24	18	
171	Monodisperse Pt nanoparticles anchored on N-doped black TiO2 as high performance bifunctional electrocatalyst. <i>Journal of Alloys and Compounds</i> , 2017 , 701, 669-675	5.7	17	
170	Superelastic Few-Layer Carbon Foam Made from Natural Cotton for All-Solid-State Electrochemical Capacitors. <i>ACS Applied Materials & Acs Applied & Acs App</i>	9.5	17	
169	Synthesis, Crystal Structure, and Optical Properties of Noncentrosymmetric NaZnSnS. <i>Inorganic Chemistry</i> , 2018 , 57, 9918-9924	5.1	17	
168	Nature-derived, structure and function integrated ultra-thick carbon electrode for high-performance supercapacitors. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 20072-20081	13	17	
167	Synthesis, crystal structures and optical properties of noncentrosymmetric oxysulfides AeGeSO (Ae = Sr, Ba). <i>Dalton Transactions</i> , 2019 , 48, 14662-14668	4.3	16	

166	K[BiMnS], Design of a Highly Selective Ion Exchange Material and Direct Gap 2D Semiconductor. Journal of the American Chemical Society, 2019 , 141, 16903-16914	16.4	16
165	Tunable Synthesis of Colorful Nitrogen-Doped Titanium Oxide and Its Application in Energy Storage. <i>ACS Applied Energy Materials</i> , 2018 , 1, 876-882	6.1	16
164	Synthesis, crystal structure and physical properties of [Li0.85Fe0.15OH][FeS]. <i>RSC Advances</i> , 2015 , 5, 38248-38253	3.7	16
163	Engineering Metallic Heterostructure Based on Ni N and 2M-MoS for Alkaline Water Electrolysis with Industry-Compatible Current Density and Stability <i>Advanced Materials</i> , 2021 , e2108505	24	16
162	Surface decoration accelerates the hydrogen evolution kinetics of a perovskite oxide in alkaline solution. <i>Energy and Environmental Science</i> , 2020 , 13, 4249-4257	35.4	16
161	Nodal superconductivity in FeS: Evidence from quasiparticle heat transport. <i>Physical Review B</i> , 2016 , 94,	3.3	16
160	Interstitial boron-doped mesoporous semiconductor oxides for ultratransparent energy storage. <i>Nature Communications</i> , 2021 , 12, 445	17.4	16
159	Black phosphorus coupled black titania nanocomposites with enhanced sunlight absorption properties for efficient photocatalytic CO2 reduction. <i>Applied Catalysis B: Environmental</i> , 2021 , 295, 120	2118	16
158	A bridge between battery and supercapacitor for power/energy gap by using dual redox-active ions electrolyte. <i>Chemical Engineering Journal</i> , 2019 , 375, 122054	14.7	15
157	Facile Synthesis of Nitrogen and Halogen Dual-Doped Porous Graphene as an Advanced Performance Anode for Lithium-Ion Batteries. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1701261	4.6	15
156	2D NbOI : A Chiral Semiconductor with Highly In-Plane Anisotropic Electrical and Optical Properties. <i>Advanced Materials</i> , 2021 , 33, e2101505	24	15
155	Boron and Nitrogen Co-Doped Trimodal-Porous Wood-Derived Carbon for Boosting Capacitive Performance. <i>Energy Technology</i> , 2020 , 8, 1900950	3.5	15
154	Tunable synthesis of Fe-Ge alloy confined in oxide matrix and its application for energy storage. Journal of Power Sources, 2017 , 360, 124-128	8.9	14
153	Atom-scale dispersed palladium in a conductive Pd0.1TaS2 lattice with a unique electronic structure for efficient hydrogen evolution. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 22618-22624	13	14
152	Boron-Induced Nitrogen Fixation in 3D Carbon Materials for Supercapacitors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 28075-28082	9.5	14
151	K(HO)MoS as a universal host for rechargeable aqueous cation (K, Na, Li, NH, Mg, Al) batteries. <i>Dalton Transactions</i> , 2020 , 49, 3488-3494	4.3	14
150	Constructing hierarchical porous carbon via tin punching for efficient electrochemical energy storage. <i>Carbon</i> , 2018 , 134, 391-397	10.4	14
149	Surface confined titania redox couple for ultrafast energy storage. <i>Materials Horizons</i> , 2018 , 5, 691-698	14.4	14

148	Semiconductive KMSbS(SH) (M = Zn, Cd) Featuring One-Dimensional [MSbS(SH)] Chains. <i>Inorganic Chemistry</i> , 2016 , 55, 9742-9747	5.1	14	
147	Prominent Electron Penetration through Ultrathin Graphene Layer from FeNi Alloy for Efficient Reduction of CO to CO. <i>ChemSusChem</i> , 2017 , 10, 3044-3048	8.3	14	
146	Constructing mesoporous phosphated titanium oxide for efficient Cr(III) removal. <i>Journal of Hazardous Materials</i> , 2020 , 384, 121278	12.8	14	
145	Cooperative Catalysis of Nickel and Nickel Oxide for Efficient Reduction of CO2 to CH4. <i>ChemCatChem</i> , 2019 , 11, 1295-1302	5.2	14	
144	Porous NiCo2S4/Co9S8 Microcubes Templated by Sacrificial ZnO Spheres as an Efficient Bifunctional Oxygen Electrocatalyst. <i>Advanced Sustainable Systems</i> , 2019 , 3, 1800167	5.9	13	
143	Ultra-Light Graphene Tile-Based Phase-Change Material for Efficient Thermal and Solar Energy Harvest. <i>ACS Applied Energy Materials</i> , 2020 , 3, 5517-5522	6.1	13	
142	SrGaOS: A Nonlinear Optical Oxysulfide with Melilite-Derived Structure and Wide Band Gap. <i>Inorganic Chemistry</i> , 2020 , 59, 9944-9950	5.1	13	
141	Silver cyanamide nanoparticles decorated ultrathin graphitic carbon nitride nanosheets for enhanced visible-light-driven photocatalysis. <i>Catalysis Science and Technology</i> , 2018 , 8, 1447-1453	5.5	13	
140	Nonaqueous synthesis of metal cyanamide semiconductor nanocrystals for photocatalytic water oxidation. <i>Chemical Communications</i> , 2018 , 54, 1575-1578	5.8	13	
139	Observation of High Seebeck Coefficient and Low Thermal Conductivity in [SrO]-Intercalated CuSbSe2 Compound. <i>Chemistry of Materials</i> , 2018 , 30, 5539-5543	9.6	13	
138	Graphene-like carbon with three-dimensional periodicity prepared from organic-inorganic templates for energy storage application. <i>Carbon</i> , 2017 , 111, 128-132	10.4	13	
137	Quasi-linear dependence of cation filling on the photocatalysis of A(x)BO3-based tunnel compounds. <i>Dalton Transactions</i> , 2011 , 40, 6906-11	4.3	13	
136	Syntheses and structures of LiAuS and Li(3)AuS(2). <i>Inorganic Chemistry</i> , 2001 , 40, 1397-8	5.1	13	
135	One-Step High-Temperature-Synthesized Single-Atom Platinum Catalyst for Efficient Selective Hydrogenation. <i>Research</i> , 2020 , 2020, 9140841	7.8	13	
134	Introducing sulfur vacancies and in-plane SnS2/SnO2 heterojunction in SnS2 nanosheets to promote photocatalytic activity. <i>Chinese Chemical Letters</i> , 2020 , 31, 2809-2813	8.1	13	
133	From CuFeS to BaCuFeGeS: rational band gap engineering achieves large second-harmonic-generation together with high laser damage threshold. <i>Chemical Communications</i> , 2019 , 55, 14510-14513	5.8	13	
132	Sol-gel assisted chemical activation for nitrogen doped porous carbon. <i>Microporous and Mesoporous Materials</i> , 2019 , 286, 18-24	5.3	12	
131	Boosting the Stable Na Storage Performance in 1D Oxysulfide. <i>Advanced Energy Materials</i> , 2019 , 9, 190	017.8	12	

130	Observation of superconductivity in pressurized 2M WSe2 crystals. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 8551-8555	7.1	12
129	Low temperature synthesis and structures of alkaline earth metal chalcogenides Ba3Cu4SbS6OH, BaCuSbS3 and BaCu2S2. <i>RSC Advances</i> , 2014 , 4, 28937	3.7	12
128	Facile sol-gel method combined with chemical vapor deposition for mesoporous few-layer carbon. <i>Carbon</i> , 2017 , 112, 47-52	10.4	12
127	Hierarchically porous hard carbon with graphite nanocrystals for high-rate sodium ion batteries with improved initial Coulombic efficiency. <i>Journal of Alloys and Compounds</i> , 2020 , 817, 152703	5.7	12
126	Oxygen-enriched tubular carbon for efficient solar steam generation. <i>Carbon</i> , 2020 , 170, 256-263	10.4	11
125	Sr6Cd2Sb6O7S10: Strong SHG Response Activated by Highly Polarizable Sb/O/S Groups. <i>Angewandte Chemie</i> , 2019 , 131, 8162-8165	3.6	10
124	Sr4Pb1.5Sb5O5Se8: a new mid-infrared nonlinear optical material with a moderate SHG response. <i>CrystEngComm</i> , 2020 , 22, 3526-3530	3.3	10
123	Gate-Tunable Electrical Transport in Thin 2M-WS2 Flakes. <i>Advanced Electronic Materials</i> , 2019 , 5, 19004	6 8 .4	10
122	Robust Anion Exchange Realized in Crystalline Metal Cyanamide Nanoparticles. <i>Chemistry of Materials</i> , 2019 , 31, 9532-9539	9.6	10
121	Conductive Black Titania Nanomaterials for Efficient Photocatalytic Degradation of Organic Pollutants. <i>Catalysis Letters</i> , 2020 , 150, 1346-1354	2.8	10
120	Capacitive lithium storage of lithiated mesoporous titania. <i>Materials Today Energy</i> , 2018 , 9, 240-246	7	10
119	Synthesis of Co2P nanoparticles decorated nitrogen, phosphorus Co-doped Carbon-CeO2 composites for highly efficient oxygen reduction. <i>Journal of Alloys and Compounds</i> , 2019 , 801, 192-198	5.7	9
118	In Situ Synthesis of MoC Nanodot@Carbon Hybrids for Capacitive Lithium-Ion Storage. <i>ACS Applied Materials & Acs Applied & Acs Applied Materials & Acs Applied & Acs Appli</i>	9.5	9
117	Self-templated synthesis of heavily nitrogen-doped hollow carbon spheres. <i>Chemical Communications</i> , 2018 , 54, 4565-4568	5.8	9
116	2H-NbS film as a novel counter electrode for meso-structured perovskite solar cells. <i>Scientific Reports</i> , 2018 , 8, 7033	4.9	9
115	A novel ultralight three-dimensional house-of-cards titania monolith for extraordinary heavy-metal adsorption. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 15724-15729	13	9
114	Dehalogenation on the surface of nano-templates: A rational route to tailor halogenated polymer-derived soft carbon. <i>Carbon</i> , 2020 , 159, 221-228	10.4	9
113	Extraordinary Porous Few-Layer Carbons of High Capacitance from Pechini Combustion of Magnesium Nitrate Gel. <i>ACS Applied Materials & Samp; Interfaces</i> , 2018 , 10, 381-388	9.5	9

112	Enhancing electrocatalytic water splitting by surface defect engineering in two-dimensional electrocatalysts. <i>Nanoscale</i> , 2021 , 13, 1581-1595	7.7	9
111	Effective incorporation of nitrogen and boron in worm-like carbon foam for confining polysulfides. <i>Carbon</i> , 2019 , 155, 379-385	10.4	8
110	Enhanced Charge Carrier Lifetime of TiS3 Photoanode by Introduction of S22IVacancies for Efficient Photoelectrochemical Hydrogen Evolution. <i>Advanced Functional Materials</i> , 2020 , 30, 2001286	15.6	8
109	Amorphous phosphated titanium oxide with amino and hydroxyl bifunctional groups for highly efficient heavy metal removal. <i>Environmental Science: Nano</i> , 2020 , 7, 1266-1274	7.1	8
108	Nitrogen-doped black titania for high performance supercapacitors. <i>Science China Materials</i> , 2020 , 63, 1227-1234	7.1	8
107	Efficient conversion of CO2 to methane using thin-layer SiOx matrix anchored nickel catalysts. <i>New Journal of Chemistry</i> , 2019 , 43, 13217-13224	3.6	8
106	Magnetotransport of polycrystalline graphene: Shubnikov-de Haas oscillation and weak localization study. <i>Applied Physics Letters</i> , 2013 , 102, 233503	3.4	8
105	Quasi-Double-Layer Solid Electrolyte with Adjustable Interphases Enabling High-Voltage Solid-State Batteries. <i>Advanced Materials</i> , 2021 , e2107183	24	8
104	Cu-dispersed cobalt oxides as high volumetric capacity anode materials for Li-ion storage. <i>Energy Storage Materials</i> , 2020 , 27, 453-458	19.4	8
103	Complexing-Coprecipitation Method to Synthesize Catalysts of Cobalt, Nitrogen-Doped Carbon, and CeO2 Nanosheets for Highly Efficient Oxygen Reduction. <i>ChemNanoMat</i> , 2019 , 5, 831-837	3.5	7
102	Building an artificial solid electrolyte interphase on spinel lithium manganate for high performance aqueous lithium-ion batteries. <i>Dalton Transactions</i> , 2020 , 49, 8136-8142	4.3	7
101	Highly Conductive Cable-Like Bicomponent Titania Photoanode Approaching Limitation of Electron and Hole Collection. <i>Advanced Functional Materials</i> , 2018 , 28, 1803328	15.6	7
100	Rapid growth of large-area single-crystal graphene film by seamless stitching using resolidified copper foil on a molybdenum substrate. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 18373-18379	13	7
99	Deep learning for depression recognition with audiovisual cues: A review. <i>Information Fusion</i> , 2022 , 80, 56-86	16.7	7
98	Tuning Coordination Environments of Dopants through Topochemical Reaction Enables Substantial Enhancement of Luminescence in Mn4+-Doped Perovskite. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 4646-4654	3.8	7
97	Efficient Co@CoPx coreBhell nanochains catalyst for the oxygen evolution reaction. <i>Inorganic Chemistry Frontiers</i> , 2018 , 5, 1844-1848	6.8	7
96	Hierarchical Hollow Microspheres Constructed by Carbon Skeleton Supported TiO2N Few-Layer Nanosheets Enable High Rate Capability and Excellent Cycling Stability for Lithium Storage. <i>ACS Applied Energy Materials</i> , 2018 , 1, 3134-3142	6.1	6
95	Synthesis, crystal structure and optical properties of K2Cu2GeS4. <i>Journal of Alloys and Compounds</i> , 2017 , 725, 557-562	5.7	6

94	Variable texture few-layer ordered macroporous carbon for high-performance electrochemical capacitors. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 25171-25176	13	6
93	Nitrogen doped hierarchical porous hard carbon derived from a facial Ti-peroxy-initiating in-situ polymerization and its application in electrochemical capacitors. <i>Microporous and Mesoporous Materials</i> , 2020 , 294, 109884	5.3	6
92	Solvothermal synthesis, structure and physical properties of Cs[Cr(en)2MSe4] (M = Ge, Sn) with [MSe4](4-) tetrahedra as chelating ligand. <i>Dalton Transactions</i> , 2016 , 45, 9097-102	4.3	6
91	Large-Scale Fabrication of Graphene-like Carbon Nanospheres for Lithium Ion Battery Application. <i>Electrochimica Acta</i> , 2016 , 218, 237-242	6.7	6
90	Enhanced Photoelectric SrOCuSbS of a [SrO]-Intercalated CuSbS Structure. <i>Inorganic Chemistry</i> , 2019 , 58, 69-72	5.1	6
89	Unusual evolution of Bc2 and Tc with inclined fields in restacked TaS2 nanosheets. <i>Npj Quantum Materials</i> , 2018 , 3,	5	6
88	One-Step Construction of Ordered Sulfur-Terminated Tantalum Carbide MXene for Efficient Overall Water Splitting. <i>Small Structures</i> , 2022 , 3, 2100206	8.7	6
87	Tubular graphene-supported nanoparticulate manganese carbodiimide as a free-standing high-energy and high-rate anode for lithium ion batteries. <i>Journal of Power Sources</i> , 2020 , 467, 228252	8.9	5
86	Pyrochlore phase Ce2Sn2O7via an atom-confining strategy for reversible lithium storage. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 5744-5749	13	5
85	SiO2 stabilizes electrochemically active nitrogen in few-layer carbon electrodes of extraordinary capacitance. <i>Journal of Energy Chemistry</i> , 2020 , 49, 179-188	12	5
84	Spherical Sacrificial ZnO TemplateDerived Hybrid Ni/Co3O4 Cubes as Efficient Bifunctional Electrocatalyst for Overall Water Splitting. <i>Energy Technology</i> , 2020 , 8, 1901310	3.5	5
83	Oxygen Evolution Activity of Co-Ni Nanochain Alloys: Promotion by Electron Injection. <i>Chemistry - A European Journal</i> , 2018 , 24, 3707-3711	4.8	5
82	Enhancement of Solar Energy Absorption and Optoelectronic Properties of SrCuSbS3 by Lead Doping. <i>Solar Rrl</i> , 2018 , 2, 1800021	7.1	5
81	Record-High Superconductivity in Transition Metal Dichalcogenides Emerged in Compressed 2H-TaS <i>Advanced Materials</i> , 2021 , e2103168	24	5
80	Niobium dioxide prepared by a novel La-reduced route as a promising catalyst support for Pd towards the oxygen reduction reaction. <i>Dalton Transactions</i> , 2020 , 49, 1398-1402	4.3	5
79	Nitrogen-doped hierarchical few-layered porous carbon for efficient electrochemical energy storage 2021 , 3, 349-359		5
78	The hierarchical structure of cubic K0.5La0.5TiO3 layers and enhanced photocatalytic hydrogen evolution after surface acidification. <i>Dalton Transactions</i> , 2015 , 44, 18665-70	4.3	4
77	NbSeC: a new compound as a combination of transition metal dichalcogenide and MXene for oxygen evolution reaction. <i>Chemical Communications</i> , 2020 , 56, 9036-9039	5.8	4

76	Synthesis, crystal structures and physical properties of A(H2O) MoS2 (A´=´K, Rb, Cs). <i>Journal of Solid State Chemistry</i> , 2019 , 279, 120937	3.3	4
75	Syntheses and structures of the infinite chain compounds Cs(4)Ti(3)Se(13), Rb(4)Ti(3)S(14), Cs(4)Ti(3)S(14), Rb(4)Hf(3)S(14), Rb(4)Zr(3)Se(14), Cs(4)Zr(3)Se(14), and Cs(4)Hf(3)Se(14). <i>Inorganic Chemistry</i> , 2001 , 40, 2346-51	5.1	4
74	Micrometer-Sized, Dual-Conductive MoO /EMoO Mosaics for High Volumetric Capacity Li/Na-Ion Batteries <i>Small Methods</i> , 2021 , 5, e2100765	12.8	4
73	Sulfur-terminated tin oxides for durable, highly reversible storage of large-capacity lithium. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 626-631	13	4
72	A rationally designed 3D interconnected porous tin dioxide cube with reserved space for volume expansion as an advanced anode of lithium-ion batteries. <i>Chemical Communications</i> , 2020 , 56, 10289-103	2 ⁵ 92	4
71	Nitrogen-Rich Hierarchical Porous Carbon Prepared by Sol-Gel Assisted Inorganic Template Methods for Supercapacitors. <i>Batteries and Supercaps</i> , 2020 , 3, 1165-1171	5.6	4
70	Intelligent system for depression scale estimation with facial expressions and case study in industrial intelligence. <i>International Journal of Intelligent Systems</i> ,	8.4	4
69	A Facile Approach To Improve Electrochemical Capacitance of Carbons by in Situ Electrochemical Oxidation. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 5999-6008	9.5	4
68	Tailoring Ultrafast and High-Capacity Sodium Storage via a Binding Energy-Driven Atomic Scissor <i>Advanced Materials</i> , 2022 , e2200863	24	4
67	Synthesis, Crystal Structure, and Physical Properties of Layered CrSeO (= Ce-Nd). <i>Inorganic Chemistry</i> , 2019 , 58, 9482-9489	5.1	3
66	Intrinsically low thermal conductivity in a p-type semiconductor SrOCuBiSe with a [SrO]-intercalated CuBiSe structure. <i>Chemical Communications</i> , 2020 , 56, 4356-4359	5.8	3
65	Observation of High Capacitance from Molecular Gd@C82 in Aqueous Electrolyte Derived from Energy-Level Matching with Proton. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1800240	4.6	3
64	Assembling Iron Oxide Nanoparticles into Aggregates by LiPO: A Universal Strategy Inspired by Frogspawn for Robust Li-Storage <i>ACS Nano</i> , 2022 ,	16.7	3
63	Utilization of Interfacial Charge Storage toward Ultra-high Capacity: LiSO Sealed Micron Sized Iron Oxides as Anode for Lithium Batteries. <i>ACS Applied Materials & District States and Communication and Communic</i>	9.5	3
62	Effect of Strong Intermolecular Interaction in 2D Inorganic Molecular Crystals. <i>Journal of the American Chemical Society</i> , 2021 , 143, 20192-20201	16.4	3
61	Constructing porous TiO crystals by an etching process for long-life lithium ion batteries. <i>Nanoscale</i> , 2020 , 12, 18429-18436	7.7	3
60	Synthesis, Crystal Structure, and Excellent Selective Pb2+ Ion Adsorption of New Layered Compound (NH4)In3(SO4)2(OH)6. <i>European Journal of Inorganic Chemistry</i> , 2019 , 2019, 5000-5007	2.3	3
59	K(HO) WS: a new layered compound for reversible hydrated potassium ion intercalation in aqueous electrolyte <i>RSC Advances</i> , 2019 , 9, 32323-32327	3.7	3

58	Flexible yet Robust Framework of Tin(II) Oxide Carbodiimide for Reversible Lithium Storage. <i>Chemistry - A European Journal</i> , 2021 , 27, 2717-2723	4.8	3
57	A new compound PtBiS with superior performance for the hydrogen evolution reaction. <i>Chemical Communications</i> , 2021 , 57, 7946-7949	5.8	3
56	A EConjugated Polyimide-Based High-Performance Aqueous Potassium-Ion Asymmetric Supercapacitor <i>Macromolecular Rapid Communications</i> , 2022 , e2200040	4.8	3
55	Thermochromic Cs AgBiBr Single Crystal with Decreased Band Gap through Order-Disorder Transition <i>Small</i> , 2022 , e2201943	11	3
54	Crystal structure design and multiband physical properties of quaternary sulfide BaBiCoS for optoelectronic conversion. <i>Chemical Communications</i> , 2019 , 55, 4809-4812	5.8	2
53	Facile and economical synthesis of nitrogen-rich tantalum nitrides via an ammonia looping process under confined space. <i>New Journal of Chemistry</i> , 2020 , 44, 9158-9162	3.6	2
52	Enhanced alkaline hydrogen evolution performance of ruthenium by synergetic doping of cobalt and phosphorus. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 4637-4643	5.8	2
51	Achieving highly stable Sn-based anode by a stiff encapsulation heterostructure. <i>Science China Materials</i> ,1	7.1	2
50	One-step synthesis of nitrogen-rich Mo2C1Nx solid solution with enhanced superconductivity. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 2682-2686	7.1	2
49	Optimization of synthesis parameters and pressure effect for layered honeycomb ruthenate SrRu2O6. <i>Journal of Alloys and Compounds</i> , 2020 , 816, 152672	5.7	2
48	Nodeless superconducting gap in the topological superconductor candidate 2MIWS2. <i>Physical Review B</i> , 2020 , 102,	3.3	2
47	Research on Hex Programmable Interconnect Points Test in Island-Style FPGA. <i>Electronics</i> (Switzerland), 2020 , 9, 2177	2.6	2
46	A New Superconducting 3R-WS Phase at High Pressure. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 3321-3327	6.4	2
45	Observation of topological superconductivity in a stoichiometric transition metal dichalcogenide 2M-WS. <i>Nature Communications</i> , 2021 , 12, 2874	17.4	2
44	A cluster UAV inspired honeycomb defense system to confront military IoT: a dynamic game approach. <i>Soft Computing</i> ,1	3.5	2
43	Revisit Electrolyte Chemistry of Hard Carbon in Ether for Na Storage. <i>Jacs Au</i> , 2021 , 1, 1208-1216		2
42	Controllable Conversion of CdNCN Nanoparticles into Various Chalcogenide Nanostructures for Photo-driven Applications. <i>Chemistry - A European Journal</i> , 2020 , 26, 7955-7960	4.8	2
41	Suppression of the superconducting transition temperature in Se-doping 2´M WS2. <i>Journal of Physics and Chemistry of Solids</i> , 2021 , 149, 109789	3.9	2

(2020-2021)

40	Synthesis, crystal and electronic structure of a new ternary parkerite selenide Pt3Pb2Se2. <i>Journal of Alloys and Compounds</i> , 2021 , 853, 157092	5.7	2
39	La6Cd0.75Ga2Q11.5Cl2.5 (Q = S and Se): two new nonlinear optical chalcohalides with a large laser-induced damage threshold. $CrystEngComm$, 2021 , 23, 2133-2137	3.3	2
38	Constructing Hierarchical Porous Carbon of High-Performance Capacitance through a Two-Step Nitrogen-Fixation Method. <i>Energy Technology</i> , 2020 , 8, 2000107	3.5	2
37	Infrared nonlinear optical sulfide CsCd4In5S12 exhibiting large second harmonic generation response. <i>Journal of Materials Chemistry C</i> , 2022 , 10, 5183-5189	7.1	2
36	Amorphous Lithium-Phosphate-Encapsulated Fe2O3 as a High-Rate and Long-Life Anode for Lithium-Ion Batteries. <i>ACS Applied Energy Materials</i> , 2022 , 5, 3463-3470	6.1	2
35	Nano gold coupled black titania composites with enhanced surface plasma properties for efficient photocatalytic alkyne reduction. <i>Applied Catalysis B: Environmental</i> , 2022 , 309, 121222	21.8	2
34	Hard Carbon Microsphere with Expanded Graphitic Interlayers Derived from a Highly Branched Polymer Network as Ultrahigh Performance Anode for Practical Sodium-Ion Batteries ACS Applied Materials & Interfaces, 2021, 13, 61180-61188	9.5	2
33	Design of Doppler parameters estimation circuit. <i>IET Circuits, Devices and Systems</i> , 2019 , 13, 565-570	1.1	1
32	Implementation of ARINC 659 Bus Controller for Space-Borne Computers. <i>Electronics (Switzerland)</i> , 2019 , 8, 435	2.6	1
31	Superconductivity in the Electron-Doped Chevrel Phase Compound MoSTe. <i>Inorganic Chemistry</i> , 2020 , 59, 6785-6789	5.1	1
30	Synthesis, structure, magnetic and optoelectric properties of layered NaM0.5Sn0.5S2 (M= Mn, Fe). <i>Journal of Alloys and Compounds</i> , 2018 , 746, 328-334	5.7	1
29	Tailoring Conductive 3D Porous Hard Carbon for Supercapacitors. <i>Energy Technology</i> ,2101103	3.5	1
28	Tendentious multiple sites occupation towards white light emission in single-phase Ba2(1-/3)Ca(1-/3)Sr B2Si4O14:Eu2+ phosphors. <i>Journal of Solid State Chemistry</i> , 2022 , 309, 122963	3.3	1
27	Crystal structure and electrical resistance property of Rb(HO) WS. <i>Acta Crystallographica Section E: Crystallographic Communications</i> , 2019 , 75, 976-979	0.7	1
26	A comparative overview of carbon anodes for nonaqueous alkali metal-ion batteries. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 27140-27169	13	1
25	A reverse slipping strategy for bulk-reduced TiO2N preparation from Magnli phase Ti4O7. <i>Inorganic Chemistry Frontiers</i> , 2020 , 7, 212-220	6.8	1
24	Large magnetoresistance in the monoclinic 2M WSe2. Europhysics Letters, 2020, 131, 10005	1.6	1
23	A novel two-dimensional oxysulfide Sr3.5Pb2.5Sb6O5S10: synthesis, crystal structure, and photoelectric properties. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 11018-11021	7.1	1

22	Synthesis, crystal structure, and magnetic properties of layered SmCrS2\(\mathbb{B}\)SexO solid solutions. <i>Inorganic Chemistry Frontiers</i> , 2020 , 7, 3980-3986	6.8	1
21	Twisted 1T TaS bilayers by lithiation exfoliation. <i>Nanoscale</i> , 2020 , 12, 18031-18038	7.7	1
20	Modulation of the Electronic Structure of IrSe2 by Filling the Bi Atom as a Bifunctional Electrocatalyst for pH Universal Water Splitting. <i>Advanced Energy and Sustainability Research</i> , 2021 , 2, 2000074	1.6	1
19	Layered Structure Na2Ti3O7 as a Promising Anode Material for Sodium-Ion Batteries. <i>Advanced Energy and Sustainability Research</i> , 2021 , 2, 2000095	1.6	1
18	Proton-insertion-pseudocapacitance of tungsten bronze tunnel structure enhanced by transition metal ion anchoring. <i>Nanoscale</i> , 2021 , 13, 16790-16798	7.7	1
17	Tuning Nitrogen Species and Content in Carbon Materials through Constructing Variable Structures for Supercapacitors. <i>Wuji Cailiao Xuebao/Journal of Inorganic Materials</i> , 2021 , 36, 766	1	1
16	A Dual-Functional Titanium Nitride Chloride Layered Matrix with Facile Lithium-Ion Diffusion Path and Decoupled Electron Transport as High-Capacity Anodes. <i>Advanced Functional Materials</i> ,2112074	15.6	1
15	Calcium-Assisted In Situ Formation of Perovskite Nanocrystals for Luminescent Green and Blue Emitters. <i>ACS Applied Nano Materials</i> , 2021 , 4, 14303-14311	5.6	1
14	Reconfigurable missile-borne SAR imaging SoC design. <i>IET Radar, Sonar and Navigation</i> , 2019 , 13, 776-	78 0 .4	0
13	Ultralight, Highly Compressible Graphene Cellular Materials with Enhanced Mechanical and Electrical Performance. <i>ChemNanoMat</i> , 2020 , 6, 1245-1250	3.5	O
12	Syntheses, crystal structures and magnetic properties of two new chromium chalcogenides Cr(en)3SbSe4 and Cr(en)2AsSe3. <i>Journal of Alloys and Compounds</i> , 2018 , 768, 970-977	5.7	O
11	Quasi-Zero-Strain[TiO2] as an Ultra-Long-Life Anode for Li-Ion Batteries. <i>ACS Applied Energy Materials</i> , 2022 , 5, 1305-1312	6.1	O
10	Realizing the Excellent HER Performance of PtPbS by d-Orbital Electronic Modulation. <i>Inorganic Chemistry</i> , 2021 , 60, 16538-16543	5.1	0
9	Highly efficient design of SDRAM-based CTM for real-time SAR imaging system. <i>IET Circuits, Devices and Systems</i> , 2019 , 13, 656-660	1.1	O
8	P-type doping in 2M-WS for a complete phase diagram. <i>Dalton Transactions</i> , 2021 , 50, 3862-3866	4.3	O
7	Metal cyanamides: Open-framework structure and energy conversion/storage applications. <i>Journal of Energy Chemistry</i> , 2021 , 61, 347-367	12	O
6	Atomically dispersed Pd-Ru dual sites in an amorphous matrix towards efficient phenylacetylene semi-hydrogenation. <i>Chemical Communications</i> , 2021 , 57, 5670-5673	5.8	0
5	Quasi-1D van der Waals Antiferromagnet CrZr Te with Large In-plane Anisotropic Negative Magnetoresistance <i>Advanced Materials</i> , 2022 , e2200145	24	О

LIST OF PUBLICATIONS

4	Two-Dimensional Silver Cyanamide Nanocrystals toward CO2 Reduction. <i>ACS Applied Nano Materials</i> , 2021 , 4, 12506-12513	5.6
3	ZnO-Templated Selenized and Phosphorized Cobalt-Nickel Oxide Microcubes as Rapid Alkaline Water Oxidation Electrocatalysts. <i>Chemistry - A European Journal</i> , 2020 , 26, 1306-1313	4.8
2	Research on EDAC Schemes for Memory in Space Applications. <i>Electronics (Switzerland)</i> , 2021 , 10, 533	2.6
1	Signatures of Spin Drbit Coupling and Charge Localization in CrIr2Sn10: A Scanning Tunneling Microscopic Study. <i>Journal of Physical Chemistry C</i> , 2022 , 126, 9117-9122	3.8