

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4328218/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tuning the functional groups of a graphene oxide membrane by ·OH contributes to the nearly complete prevention of membrane fouling. Journal of Membrane Science, 2019, 576, 190-197.	4.1	14
2	Borate Inorganic Cross-Linked Durable Graphene Oxide Membrane Preparation and Membrane Fouling Control. Environmental Science & Technology, 2019, 53, 1501-1508.	4.6	37
3	Coupled Sulfur and Iron(II) Carbonate-Driven Autotrophic Denitrification for Significantly Enhanced Nitrate Removal. Environmental Science & Technology, 2019, 53, 1545-1554.	4.6	110
4	NO Removal with Efficient Recovery of N ₂ O by Using Recyclable Fe ₃ O ₄ @EDTA@Fe(II) Complex: A Novel Approach toward Resource Recovery from Flue Gas. Environmental Science & Technology, 2019, 53, 1004-1013.	4.6	46
5	A novel bioelectrochemical method for real-time nitrate monitoring. Bioelectrochemistry, 2019, 125, 33-37.	2.4	13
6	Electrostimulated bio-dechlorination of trichloroethene by potential regulation: Kinetics, microbial community structure and function. Chemical Engineering Journal, 2019, 357, 633-640.	6.6	52
7	Functional graphene oxide membrane preparation for organics/inorganic salts mixture separation aiming at advanced treatment of refractory wastewater. Science of the Total Environment, 2018, 628-629, 261-270.	3.9	27
8	Micro-oxygen bioanode: An efficient strategy for enhancement of phenol degradation and current generation in mix-cultured MFCs. Bioresource Technology, 2018, 268, 176-182.	4.8	53
9	Kinetic competition between microbial anode respiration and nitrate respiration in a bioelectrochemical system. Bioelectrochemistry, 2018, 123, 241-247.	2.4	20
10	Polarity inversion of bioanode for biocathodic reduction of aromatic pollutants. Journal of Hazardous Materials, 2017, 331, 280-288.	6.5	58
11	Corrugated stainless-steel mesh as a simple engineerable electrode module in bio-electrochemical system: Hydrodynamics and the effects on decolorization performance. Journal of Hazardous Materials, 2017, 338, 287-295.	6.5	28
12	Increasing the bio-electrochemical system performance in azo dye wastewater treatment: Reduced electrode spacing for improved hydrodynamics. Bioresource Technology, 2017, 245, 962-969.	4.8	37
13	Microbial Photoelectrotrophic Denitrification as a Sustainable and Efficient Way for Reducing Nitrate to Nitrogen. Environmental Science & Technology, 2017, 51, 12948-12955.	4.6	67
14	Palladized cells as suspension catalyst and electrochemical catalyst for reductively degrading aromatics contaminants: Roles of Pd size and distribution. Water Research, 2017, 125, 288-297.	5.3	34
15	Comprehensive study on hybrid anaerobic reactor built-in with sleeve type bioelectrocatalyzed modules. Chemical Engineering Journal, 2017, 330, 1306-1315.	6.6	24
16	Activating electrochemical catalytic activity of bio-palladium by hybridizing with carbon nanotube as "eâ^' Bridge― Scientific Reports, 2017, 7, 16588.	1.6	13
17	Evaluation of anaerobic sludge volume for improving azo dye decolorization in a hybrid anaerobic reactor with built-in bioelectrochemical system. Chemosphere, 2017, 169, 18-22.	4.2	24
18	Spatial Abundance and Distribution of Potential Microbes and Functional Genes Associated with Anaerobic Mineralization of Pentachlorophenol in a Cylindrical Reactor. Scientific Reports, 2016, 6, 19015.	1.6	13

浩æ⁻... ç¨<

#	Article	IF	CITATIONS
19	Effect of electrode position on azo dye removal in an up-flow hybrid anaerobic digestion reactor with built-in bioelectrochemical system. Scientific Reports, 2016, 6, 25223.	1.6	32
20	Azo dye decolorization in an up-flow bioelectrochemical reactor with domestic wastewater as a cost-effective yet highly efficient electron donor source. Water Research, 2016, 105, 520-526.	5.3	82
21	Efficient azo dye decolorization in a continuous stirred tank reactor (CSTR) with built-in bioelectrochemical system. Bioresource Technology, 2016, 218, 1307-1311.	4.8	22
22	Electroactive Biofilm Serving as the Green Synthesizer and Stabilizer for <i>in Situ</i> Fabricating 3D Nanopalladium Network: An Efficient Electrocatalyst. ACS Sustainable Chemistry and Engineering, 2016, 4, 5392-5397.	3.2	29
23	Analysis of electrode microbial communities in an up-flow bioelectrochemical system treating azo dye wastewater. Electrochimica Acta, 2016, 220, 252-257.	2.6	38
24	Shielding membrane surface carboxyl groups by covalent-binding graphene oxide to improve anti-fouling property and the simultaneous promotion of flux. Water Research, 2016, 102, 619-628.	5.3	59
25	Decolorization enhancement by optimizing azo dye loading rate in an anaerobic reactor. RSC Advances, 2016, 6, 49995-50001.	1.7	22
26	Efficient treatment of azo dye containing wastewater in a hybrid acidogenic bioreactor stimulated by biocatalyzed electrolysis. Journal of Environmental Sciences, 2016, 39, 198-207.	3.2	25
27	Stimulation of oxygen to bioanode for energy recovery from recalcitrant organic matter aniline inÂmicrobial fuel cells (MFCs). Water Research, 2015, 81, 72-83.	5.3	76
28	Cathodic degradation of antibiotics: Characterization and pathway analysis. Water Research, 2015, 72, 281-292.	5.3	166
29	Microbial community structure and function of Nitrobenzene reduction biocathode in response to carbon source switchover. Water Research, 2014, 54, 137-148.	5.3	134
30	Accelerated decolorization of azo dye Congo red in a combined bioanode–biocathode bioelectrochemical system with modified electrodes deployment. Bioresource Technology, 2014, 151, 332-339.	4.8	36
31	Efficient azo dye removal in bioelectrochemical system and post-aerobic bioreactor: Optimization and characterization. Chemical Engineering Journal, 2014, 243, 355-363.	6.6	55
32	Enhanced decolorization of azo dye in a small pilot-scale anaerobic baffled reactor coupled with biocatalyzed electrolysis system (ABR–BES): A design suitable for scaling-up. Bioresource Technology, 2014, 163, 254-261.	4.8	81
33	Improved azo dye decolorization in a modified sleeve-type bioelectrochemical system. Bioresource Technology, 2013, 143, 669-673.	4.8	29
34	Accelerated Reduction of Chlorinated Nitroaromatic Antibiotic Chloramphenicol by Biocathode. Environmental Science & Technology, 2013, 47, 5353-5361.	4.6	230
35	Azo dye removal in a membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor. Journal of Hazardous Materials, 2012, 239-240, 257-264.	6.5	75
36	Sediment microbial fuel cell with floating biocathode for organic removal and energy recovery. Frontiers of Environmental Science and Engineering, 2012, 6, 569-574.	3.3	64

Ƶ©æ⁻... 程

#	Article	IF	CITATIONS
37	Enhanced degradation of azo dye alizarin yellow R in a combined process of iron–carbon microelectrolysis and aerobic bio-contact oxidation. Environmental Science and Pollution Research, 2012, 19, 1385-1391.	2.7	24
38	A membrane-free, continuously feeding, single chamber up-flow biocatalyzed electrolysis reactor for nitrobenzene reduction. Journal of Hazardous Materials, 2012, 199-200, 401-409.	6.5	52
39	Efficient Reduction of Nitrobenzene to Aniline with a Biocatalyzed Cathode. Environmental Science & Technology, 2011, 45, 10186-10193.	4.6	254
40	Reduced internal resistance of microbial electrolysis cell (MEC) as factors of configuration and stuffing with granular activated carbon. International Journal of Hydrogen Energy, 2010, 35, 13488-13492.	3.8	47