Jun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4327807/publications.pdf

Version: 2024-02-01

57	3,465	31	58
papers	citations	h-index	g-index
81	81	81	3117 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	A Class of Readily Tunable Planarâ€Chiral Cyclopentadienyl Rhodium(III) Catalysts for Asymmetric C–H Activation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	24
2	A Class of Readily Tunable Planarâ€Chiral Cyclopentadienyl Rhodium(III) Catalysts for Asymmetric C–H Activation. Angewandte Chemie, 2022, 134, .	2.0	2
3	Chiral Arene Ligand as Stereocontroller for Asymmetric Câ^'H Activation**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	19
4	Chiral Arene Ligand as Stereocontroller for Asymmetric Câ^'H Activation**. Angewandte Chemie, 2022, 134, .	2.0	3
5	Chiralâ€Directingâ€Groupâ€Assisted Rhodium(III)â€Catalyzed Asymmetric Addition of Inert Arene Câ^'H Bond to Aldimines with Subsequent Intramolecular Cyclization. Chemistry - A European Journal, 2021, 27, 16611-16615.	3.3	2
6	Ruthenium(II)â€Catalyzed Asymmetric Inert Câ^'H Bond Activation Assisted by a Chiral Transient Directing Group. Angewandte Chemie, 2020, 132, 3503-3507.	2.0	21
7	Ruthenium(II)â€Catalyzed Asymmetric Inert Câ^'H Bond Activation Assisted by a Chiral Transient Directing Group. Angewandte Chemie - International Edition, 2020, 59, 3475-3479.	13.8	89
8	Chiral Bicyclo[2.2.2]octaneâ€Fused CpRh Complexes: Synthesis and Potential Use in Asymmetric Câ^'H Activation. Angewandte Chemie, 2020, 132, 22622-22626.	2.0	38
9	Chiral Bicyclo[2.2.2]octaneâ€Fused CpRh Complexes: Synthesis and Potential Use in Asymmetric Câ°'H Activation. Angewandte Chemie - International Edition, 2020, 59, 22436-22440.	13.8	54
10	Synthesis of 3â€Unsubstituted Phthalides from Aryl Amides and Paraformaldehyde via Ruthenium(II)â€Catalyzed C–H Activation. European Journal of Organic Chemistry, 2020, 2020, 6485-6488.	2.4	4
11	A New Class of <i>C</i> ₂ â€Symmetric Chiral Cyclopentadienyl Ligand Derived from Ferrocene Scaffold: Design, Synthesis and Application. Chemistry - A European Journal, 2020, 26, 14546-14550.	3.3	41
12	Rhodium(III)â€Catalyzed Câ^'H/Nâ^'H Functionalization with Hydrogen Evolution. Chemistry - A European Journal, 2020, 26, 7365-7368.	3.3	4
13	Development of a <i>C</i> ₂ -Symmetric Chiral <i>aza</i> <spirocyclic 2020,="" 22,="" 3110-3113.<="" diol.="" letters,="" organic="" td=""><td>4.6</td><td>7</td></spirocyclic>	4.6	7
14	Rhodium(III)-Catalyzed Asymmetric C–H Activation of <i>N</i> -Methoxybenzamide with Quinone and Its Application in the Asymmetric Synthesis of a Dihydrolycoricidine Analogue. Organic Letters, 2020, 22, 3219-3223.	4.6	27
15	Rhodium(III)â€Catalyzed Directed Câ^'H Bond Naphthylation with 7â€Azabenzonorbornadiene as the Naphthylating Reagent. Asian Journal of Organic Chemistry, 2020, 9, 233-237.	2.7	7
16	Rhodium(III)-Catalyzed Asymmetric Addition of Inert Arene C–H Bond to Aldehydes To Afford Enantioenriched Phthalides. Organic Letters, 2020, 22, 3586-3590.	4.6	35
17	Enantioselective Organocatalytic Desymmetrization of Cyclopentene-1,3-diones through Formal C(sp ²)â€"H Amidation. Journal of Organic Chemistry, 2019, 84, 11306-11315.	3.2	10
18	<i>N</i> -Methoxyamide: An Alternative Amidation Reagent in the Rhodium(III)-Catalyzed C–H Activation. Organic Letters, 2019, 21, 9315-9319.	4.6	28

#	Article	IF	Citations
19	Three-Component Synthesis of Isoquinoline Derivatives by a Relay Catalysis with a Single Rhodium(III) Catalyst. Organic Letters, 2019, 21, 4971-4975.	4.6	30
20	Enantioselective Synthesis of Câ^'N Axially Chiral Nâ€Aryloxindoles by Asymmetric Rhodiumâ€Catalyzed Dual Câ^'H Activation. Angewandte Chemie - International Edition, 2019, 58, 6732-6736.	13.8	161
21	Enantioselective Synthesis of Câ^'N Axially Chiral Nâ€Aryloxindoles by Asymmetric Rhodium atalyzed Dual Câ^'H Activation. Angewandte Chemie, 2019, 131, 6804-6808.	2.0	63
22	Introducing the Chiral Transient Directing Group Strategy to Rhodium(III) atalyzed Asymmetric Câ^'H Activation. Chemistry - A European Journal, 2019, 25, 4688-4694.	3.3	59
23	Solventâ€Dependent Asymmetric Synthesis of Alkynyl and Monofluoroalkenyl Isoindolinones by CpRh ^{Ill} â€Catalyzed Câ°'H Activation. Angewandte Chemie - International Edition, 2018, 57, 4048-4052.	13.8	161
24	Solventâ€Dependent Asymmetric Synthesis of Alkynyl and Monofluoroalkenyl Isoindolinones by CpRh ^{Ill/sup>â€Catalyzed Câ~H Activation. Angewandte Chemie, 2018, 130, 4112-4116.}	2.0	58
25	Metal-Free Synthesis of Functionalized Tetrasubstituted Alkenes by Three-Component Reaction of Alkynes, lodine, and Sodium Sulfinates. ACS Omega, 2018, 3, 18002-18015.	3.5	22
26	Asymmetric Rh(I)-Catalyzed Functionalization of the 3-C(<i>sp</i> ³)â€"H Bond of Benzofuranones with α-Diazoesters. Organic Letters, 2018, 20, 5889-5893.	4.6	24
27	Probiotic E. coli Nissle 1917 biofilms on silicone substrates for bacterial interference against pathogen colonization. Acta Biomaterialia, 2017, 50, 353-360.	8.3	22
28	Copper-catalyzed click reaction on/in live cells. Chemical Science, 2017, 8, 2107-2114.	7.4	102
29	Coating of silicone with mannoside-PAMAM dendrimers to enhance formation of non-pathogenic Escherichia coli biofilms against colonization of uropathogens. Acta Biomaterialia, 2017, 64, 200-210.	8.3	19
30	Enantioselective Hydrolysis of Amino Acid Esters Promoted by Bis(β-cyclodextrin) Copper Complexes. Scientific Reports, 2016, 6, 22080.	3.3	14
31	Cp*Co ^{III} -Catalyzed C–H Alkenylation/Annulation to Afford Spiro Indenyl Benzosultam. Journal of Organic Chemistry, 2016, 81, 6093-6099.	3.2	56
32	Synthesis of 2-Alkenylquinoline by Reductive Olefination of Quinoline <i>N</i> -Oxide under Metal-Free Conditions. Organic Letters, 2016, 18, 1796-1799.	4.6	68
33	Surfaces presenting \hat{i} ±-phenyl mannoside derivatives enable formation of stable, high coverage, non-pathogenic Escherichia coli biofilms against pathogen colonization. Biomaterials Science, 2015, 3, 842-851.	5.4	14
34	Ironâ€Catalyzed Imidative Kinetic Resolution of Racemic Sulfoxides. Chemistry - A European Journal, 2014, 20, 966-969.	3.3	77
35	Palladiumâ€Catalyzed Crossâ€Dehydrogenative Functionalization of C(sp ²)H Bonds. Chemistry - an Asian Journal, 2014, 9, 26-47.	3.3	249
36	Cul-catalyzed cross-coupling of terminal alkynes with dialkoxycarbenes: a general method for the synthesis of unsymmetrical propargylic acetals. Organic and Biomolecular Chemistry, 2014, 12, 6215-6222.	2.8	13

#	Article	IF	CITATIONS
37	Enantioselective Nitrene Transfer to Sulfides Catalyzed by a Chiral Iron Complex. Angewandte Chemie - International Edition, 2013, 52, 8661-8665.	13.8	110
38	Mild Copperâ€Mediated Direct Oxidative Crossâ€Coupling of 1,3,4â€Oxadiazoles with Polyfluoroarenes by Using Dioxygen as Oxidant. Chemistry - A European Journal, 2013, 19, 3302-3305.	3.3	39
39	A Theoretical Investigation on the Strecker Reaction Catalyzed by a Ti ^{IV} omplex Catalyst Generated from a Cinchona Alkaloid, Achiral Substituted 2,2′â€Biphenol, and Tetraisopropyl Titanate. Chemistry - A European Journal, 2013, 19, 1637-1646.	3.3	8
40	Biofunctionalization of a "Clickable―Organic Layer Photochemically Grafted on Titanium Substrates. Langmuir, 2011, 27, 4848-4856.	3.5	26
41	Rapid Grafting of Azido-Labeled Oligo(ethylene glycol)s onto an Alkynyl-Terminated Monolayer on Nonoxidized Silicon via Microwave-Assisted "Click―Reaction. Langmuir, 2011, 27, 2437-2445.	3.5	30
42	Asymmetric Strecker Reactions. Chemical Reviews, 2011, 111, 6947-6983.	47.7	447
43	Highly Enantioselective Synthesis of βâ€Heteroarylâ€Substituted Dihydrochalcones Through Friedel–Crafts Alkylation of Indoles and Pyrrole. Chemistry - A European Journal, 2010, 16, 1664-1669.	3.3	84
44	Highly Enantioselective Insertion of Carbenoids into NH Bonds Catalyzed by Copper(I) Complexes of Binol Derivatives. Angewandte Chemie - International Edition, 2010, 49, 4763-4766.	13.8	110
45	Catalytic Asymmetric Roskamp Reaction of α-Alkyl-α-diazoesters with Aromatic Aldehydes: Highly Enantioselective Synthesis of α-Alkyl-β-keto Esters. Journal of the American Chemical Society, 2010, 132, 8532-8533.	13.7	166
46	Asymmetric Cyanation of Activated Olefins with Ethyl Cyanoformate Catalyzed by a Modular Titanium Catalyst. Organic Letters, 2010, 12, 1280-1283.	4.6	77
47	Highly enantioselective α-chlorination of cyclic β-ketoesters catalyzed by N,N′-Dioxide using NCS as the chlorine source. Chemical Communications, 2010, 46, 1250.	4.1	67
48	Highly Enantioselective Synthesis of α-Diazo-β-hydroxy Esters Using a Bifunctional Titanium Complex. Synlett, 2009, 2009, 1655-1658.	1.8	1
49	Asymmetric Cyanation of Aldehydes, Ketones, Aldimines, and Ketimines Catalyzed by a Versatile Catalyst Generated from Cinchona Alkaloid, Achiral Substituted $2,2\hat{a}\in B$ iphenol and Tetraisopropyl Titanate. Chemistry - A European Journal, 2009, 15, 11642-11659.	3.3	92
50	Chiral biphenylamide derivative: an efficient organocatalyst for the enantioselective synthesis of α-hydroxy phosphonates. Organic and Biomolecular Chemistry, 2009, 7, 4355.	2.8	27
51	Highly Enantioselective Strecker Reaction of Ketoimines Catalyzed by an Organocatalyst from (<i>S</i>)â€BINOL and <scp>L</scp> â€Prolinamide. Chemistry - A European Journal, 2008, 14, 4484-4486.	3.3	74
52	A Secondary Amine Amide Organocatalyst for the Asymmetric Nitroaldol Reaction of αâ€Ketophosphonates. Chemistry - A European Journal, 2008, 14, 10896-10899.	3.3	55
53	Highly Enantioselective Aza-Henry Reaction of Ketoimines Catalyzed by Chiral <i>N</i> , <i>N</i> ,62-Dioxideâ°Copper(I) Complexes. Organic Letters, 2008, 10, 5305-5308.	4.6	112
54	Asymmetric Activation of <i>tropos</i> 2,2′â€Biphenol with Cinchonine Generates an Effective Catalyst for the Asymmetric Strecker Reaction of <i>N</i> â€Tosylâ€Protected Aldimines and Ketoimines. Angewandte Chemie - International Edition, 2007, 46, 8468-8470.	13.8	116

#	Article	IF	CITATIONS
55	Asymmetric Cyanoethoxycarbonylation of Aldehydes Catalyzed by Heterobimetallic Aluminum Lithium Bis(binaphthoxide) and Cinchonine. Advanced Synthesis and Catalysis, 2007, 349, 343-349.	4.3	43
56	Asymmetric cyanosilylation of ketones catalyzed by novel chiral N,N′-dioxide titanium complexes. Tetrahedron Letters, 2006, 47, 4011-4014.	1.4	30
57	Highly Efficient Approach to 4-Ethoxy-5,6-dihydro-6,6-disubstituted Pyran-2-ones using a Combinational Lewis Acid-Base System. Advanced Synthesis and Catalysis, 2006, 348, 939-944.	4.3	6