
## Jeffrey A Siegel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/432743/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Indoor exposure to phthalates and polycyclic aromatic hydrocarbons (PAHs) to Canadian children:<br>the Kingston allergy birth cohort. Journal of Exposure Science and Environmental Epidemiology, 2022,<br>32, 69-81. | 1.8 | 8         |
| 2  | Particulate matter concentrations in social housing. Sustainable Cities and Society, 2022, 76, 103503.                                                                                                                | 5.1 | 7         |
| 3  | The impact of emissions from an essential oil diffuser on cognitive performance. Indoor Air, 2022, 32, .                                                                                                              | 2.0 | 9         |
| 4  | Quantitative filter forensics for semivolatile organic compounds in social housing apartments.<br>Indoor Air, 2022, 32, e12994.                                                                                       | 2.0 | 1         |
| 5  | Modeling Clothing as a Vector for Transporting Airborne Particles and Pathogens across Indoor<br>Microenvironments. Environmental Science & Technology, 2022, 56, 5641-5652.                                          | 4.6 | 11        |
| 6  | Can green schools influence academic performance?. Critical Reviews in Environmental Science and Technology, 2021, 51, 1354-1396.                                                                                     | 6.6 | 7         |
| 7  | Assessing the impact of filtration systems in indoor environments with effectiveness. Building and Environment, 2021, 187, 107389.                                                                                    | 3.0 | 6         |
| 8  | HVAC filtration of particles and trace metals: Airborne measurements and the evaluation of quantitative filter forensics. Environmental Pollution, 2021, 271, 116388.                                                 | 3.7 | 1         |
| 9  | Volatile organic compound and particulate matter emissions from an ultrasonic essential oil diffuser. Indoor Air, 2021, 31, 1982-1992.                                                                                | 2.0 | 4         |
| 10 | Quantifying thermal comfort and carbon savings from energy-retrofits in social housing. Energy and Buildings, 2021, 241, 110950.                                                                                      | 3.1 | 16        |
| 11 | Distribution of SARS-CoV-2 RNA signal in a home with COVID-19 positive occupants. Science of the Total Environment, 2021, 778, 146201.                                                                                | 3.9 | 39        |
| 12 | Modeling the Removal of Water-Soluble Trace Gases from Indoor Air via Air Conditioner Condensate.<br>Environmental Science & Technology, 2021, 55, 10987-10993.                                                       | 4.6 | 8         |
| 13 | The impact of control strategies on filtration performance. Energy and Buildings, 2021, 252, 111378.                                                                                                                  | 3.1 | 2         |
| 14 | Quantitative filter forensics: Size distribution and particulate matter concentrations in residential buildings. Indoor Air, 2021, 31, 1050-1060.                                                                     | 2.0 | 2         |
| 15 | Inâ€situ effectiveness of residential HVAC filters. Indoor Air, 2020, 30, 156-166.                                                                                                                                    | 2.0 | 18        |
| 16 | Energy use in residential buildings: Analyses of high-efficiency filters and HVAC fans. Energy and<br>Buildings, 2020, 209, 109697.                                                                                   | 3.1 | 15        |
| 17 | In situ efficiency of filters in residential central HVAC systems. Indoor Air, 2020, 30, 315-325.                                                                                                                     | 2.0 | 9         |
| 18 | Bacterial and fungal ecology on air conditioning cooling coils is influenced by climate and building factors. Indoor Air, 2020, 30, 326-334.                                                                          | 2.0 | 17        |

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Cardiopulmonary Impact of Particulate Air Pollution in High-Risk Populations. Journal of the<br>American College of Cardiology, 2020, 76, 2878-2894.                                                                         | 1.2 | 68        |
| 20 | Use of a high-flow extractor to reduce aerosol exposure in tracheal intubation. British Journal of<br>Anaesthesia, 2020, 125, e363-e366.                                                                                     | 1.5 | 11        |
| 21 | Personal-Level Protective Actions Against Particulate Matter Air Pollution Exposure: A Scientific Statement From the American Heart Association. Circulation, 2020, 142, e411-e431.                                          | 1.6 | 112       |
| 22 | Electrostatic Precipitators as an Indoor Air Cleaner—A Literature Review. Sustainability, 2020, 12, 8774.                                                                                                                    | 1.6 | 41        |
| 23 | Extraction of dust collected in HVAC filters for quantitative filter forensics. Aerosol Science and Technology, 2020, 54, 1282-1292.                                                                                         | 1.5 | 8         |
| 24 | Modeling microbial growth in carpet dust exposed to diurnal variations in relative humidity using the<br>"Timeâ€ofâ€Wetness―framework. Indoor Air, 2020, 30, 978-992.                                                        | 2.0 | 15        |
| 25 | Indoor CO <sub>2</sub> concentrations and cognitive function: A critical review. Indoor Air, 2020, 30, 1067-1082.                                                                                                            | 2.0 | 83        |
| 26 | Laboratory performance of new and used residential HVAC filters: Comparison to field results (RP-1649). Science and Technology for the Built Environment, 2020, 26, 844-855.                                                 | 0.8 | 1         |
| 27 | Investigating the impact of filters on long-term particle concentration measurements in residences (RP-1649). Science and Technology for the Built Environment, 2020, 26, 1037-1047.                                         | 0.8 | 9         |
| 28 | Elevated Concentrations of Semivolatile Organic Compounds in Social Housing Multiunit Residential<br>Building Apartments. Environmental Science and Technology Letters, 2020, 7, 191-197.                                    | 3.9 | 20        |
| 29 | Quantitative filter forensics with residential HVAC filters to assess indoor concentrations. Indoor Air, 2019, 29, 390-402.                                                                                                  | 2.0 | 15        |
| 30 | Illuminating the dark side of indoor oxidants. Environmental Sciences: Processes and Impacts, 2019, 21, 1229-1239.                                                                                                           | 1.7 | 47        |
| 31 | IAQ and energy implications of high efficiency filters in residential buildings: A review (RP-1649).<br>Science and Technology for the Built Environment, 2019, 25, 261-271.                                                 | 0.8 | 22        |
| 32 | Sources of isocyanic acid (HNCO) indoors: a focus on cigarette smoke. Environmental Sciences:<br>Processes and Impacts, 2019, 21, 1334-1341.                                                                                 | 1.7 | 14        |
| 33 | Measurement of residential HVAC system runtime. Building and Environment, 2019, 150, 99-107.                                                                                                                                 | 3.0 | 14        |
| 34 | Indoor environmental quality perceptions of social housing residents. Building and Environment, 2019, 150, 135-143.                                                                                                          | 3.0 | 25        |
| 35 | Indoor environmental quality in social housing: A literature review. Building and Environment, 2018,<br>131, 231-241.                                                                                                        | 3.0 | 112       |
| 36 | Phthalates and organophosphates in settled dust and HVAC filter dust of U.S. low-income homes:<br>Association with season, building characteristics, and childhood asthma. Environment International,<br>2018, 121, 916-930. | 4.8 | 102       |

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Evidence for Gas–Surface Equilibrium Control of Indoor Nitrous Acid. Environmental Science &<br>Technology, 2018, 52, 12419-12427.                                                               | 4.6 | 71        |
| 38 | Residential HVAC runtime from smart thermostats: characterization, comparison, and impacts. Indoor Air, 2018, 28, 905-915.                                                                       | 2.0 | 32        |
| 39 | Exploration of a long-term measurement approach for air change rate. Building and Environment, 2018, 144, 474-481.                                                                               | 3.0 | 13        |
| 40 | Building and environmental factors that influence bacterial and fungal loading on air conditioning cooling coils. Indoor Air, 2018, 28, 689-696.                                                 | 2.0 | 25        |
| 41 | Filter forensics: microbiota recovery from residential HVAC filters. Microbiome, 2018, 6, 22.                                                                                                    | 4.9 | 35        |
| 42 | Thermal comfort in multi-unit social housing buildings. Building and Environment, 2018, 144, 230-237.                                                                                            | 3.0 | 23        |
| 43 | Bacterial colonization and succession in a newly opened hospital. Science Translational Medicine, 2017, 9, .                                                                                     | 5.8 | 248       |
| 44 | Quantitative filter forensics for indoor particle sampling. Indoor Air, 2017, 27, 364-376.                                                                                                       | 2.0 | 17        |
| 45 | Particulate reactive oxygen species on total suspended particles – measurements in residences in<br>Austin, Texas. Indoor Air, 2016, 26, 953-963.                                                | 2.0 | 8         |
| 46 | Characterizing the bacterial communities in retail stores in the United States. Indoor Air, 2016, 26, 857-868.                                                                                   | 2.0 | 26        |
| 47 | Impact of ventilation and filtration strategies on energy consumption and exposures in retail stores.<br>Building and Environment, 2016, 100, 186-196.                                           | 3.0 | 24        |
| 48 | Ten questions concerning the microbiomes of buildings. Building and Environment, 2016, 109, 224-234.                                                                                             | 3.0 | 143       |
| 49 | Geography and Location Are the Primary Drivers of Office Microbiome Composition. MSystems, 2016, 1,                                                                                              | 1.7 | 110       |
| 50 | Analysis of the cost effectiveness of combined particle and activated carbon filters for indoor ozone removal in buildings. Science and Technology for the Built Environment, 2016, 22, 227-236. | 0.8 | 7         |
| 51 | Primary and secondary consequences of indoor air cleaners. Indoor Air, 2016, 26, 88-96.                                                                                                          | 2.0 | 87        |
| 52 | Field evaluation of five volatile organic compound measurement techniques: Implications for green building decision making. Science and Technology for the Built Environment, 2015, 21, 67-79.   | 0.8 | 8         |
| 53 | Moisture parameters and fungal communities associated with gypsum drywall in buildings.<br>Microbiome, 2015, 3, 71.                                                                              | 4.9 | 61        |
| 54 | Spatial and Temporal Variations in Indoor Environmental Conditions, Human Occupancy, and Operational Characteristics in a New Hospital Building. PLoS ONE, 2015, 10, e0118207.                   | 1.1 | 54        |

| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Modeling Ozone Removal to Indoor Materials, Including the Effects of Porosity, Pore Diameter, and<br>Thickness. Environmental Science & Technology, 2015, 49, 4398-4406.                                                                       | 4.6 | 17        |
| 56 | Methods to assess human occupancy and occupant activity in hospital patient rooms. Building and Environment, 2015, 90, 136-145.                                                                                                                | 3.0 | 53        |
| 57 | Semi-volatile organic compounds in heating, ventilation, and air-conditioning filter dust in retail stores. Indoor Air, 2015, 25, 79-92.                                                                                                       | 2.0 | 31        |
| 58 | Exploring the microbiome of the built environment: A primer on four biological methods available to building professionals. HVAC and R Research, 2014, 20, 167-175.                                                                            | 0.9 | 6         |
| 59 | Volatile organic compounds in fourteen U.S. retail stores. Indoor Air, 2014, 24, 484-494.                                                                                                                                                      | 2.0 | 24        |
| 60 | The relationship between filter pressure drop, indoor air quality, and energy consumption in rooftop<br>HVAC units. Building and Environment, 2014, 73, 151-161.                                                                               | 3.0 | 109       |
| 61 | Ventilation and indoor air quality in retail stores: A critical review (RP-1596). HVAC and R Research, 2014, 20, 276-294.                                                                                                                      | 0.9 | 24        |
| 62 | Phthalates and polybrominated diphenyl ethers in retail stores. Atmospheric Environment, 2014, 87,<br>53-64.                                                                                                                                   | 1.9 | 18        |
| 63 | Impact of Physical Properties on Ozone Removal by Several Porous Materials. Environmental Science<br>& Technology, 2014, 48, 3682-3690.                                                                                                        | 4.6 | 21        |
| 64 | Impact of sampler selection on the characterization of the indoor microbiome via high-throughput sequencing. Building and Environment, 2014, 80, 274-282.                                                                                      | 3.0 | 45        |
| 65 | Indoor particulate reactive oxygen species concentrations. Environmental Research, 2014, 132, 46-53.                                                                                                                                           | 3.7 | 23        |
| 66 | Technical Note: Particulate reactive oxygen species concentrations and their association with<br>environmental conditions in an urban, subtropical climate. Atmospheric Chemistry and Physics, 2014,<br>14, 6777-6784.                         | 1.9 | 6         |
| 67 | Indoor Secondary Organic Aerosol Formation Initiated from Reactions between Ozone and<br>Surface-Sorbed <scp>d</scp> -Limonene. Environmental Science & Technology, 2013, 47, 6341-6348.                                                       | 4.6 | 75        |
| 68 | Impact of cement renders on airborne ozone and carbon dioxide concentrations. Atmospheric<br>Environment, 2013, 70, 263-266.                                                                                                                   | 1.9 | 7         |
| 69 | Wind Tunnel Study on Aerodynamic Particle Resuspension from Monolayer and Multilayer Deposits<br>on Linoleum Flooring and Galvanized Sheet Metal. Aerosol Science and Technology, 2013, 47, 848-857.                                           | 1.5 | 28        |
| 70 | Ultrafine particle removal by residential heating, ventilating, and air-conditioning filters. Indoor Air, 2013, 23, 488-497.                                                                                                                   | 2.0 | 80        |
| 71 | Monolayer and Multilayer Particle Deposits on Hard Surfaces: Literature Review and Implications for<br>Particle Resuspension in the Indoor Environment. Aerosol Science and Technology, 2013, 47, 831-847.                                     | 1.5 | 70        |
| 72 | The Hospital Microbiome Project: Meeting Report for the 1st Hospital Microbiome Project Workshop<br>on sampling design and building science measurements, Chicago, USA, June 7th-8th 2012. Standards in<br>Genomic Sciences, 2013, 8, 112-117. | 1.5 | 18        |

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | The Hospital Microbiome Project: Meeting report for the 2nd Hospital Microbiome Project, Chicago,<br>USA, January 15th, 2013. Standards in Genomic Sciences, 2013, 8, 571-579.                                     | 1.5 | 11        |
| 74 | Comparison of Test Methods for Determining the Particle Removal Efficiency of Filters in Residential and Light-Commercial Central HVAC Systems. Aerosol Science and Technology, 2012, 46, 504-513.                 | 1.5 | 45        |
| 75 | Measuring the Penetration of Ambient Ozone into Residential Buildings. Environmental Science &<br>Technology, 2012, 46, 929-936.                                                                                   | 4.6 | 70        |
| 76 | Long-term performance of passive materials for removal of ozone from indoor air. Indoor Air, 2012, 22, 43-53.                                                                                                      | 2.0 | 55        |
| 77 | Penetration of ambient submicron particles into single-family residences and associations with building characteristics. Indoor Air, 2012, 22, 501-513.                                                            | 2.0 | 93        |
| 78 | The effect of an ion generator on indoor air quality in a residential room. Indoor Air, 2011, 21, 267-276.                                                                                                         | 2.0 | 41        |
| 79 | Evaluation of HVAC filters as a sampling mechanism for indoor microbial communities. Atmospheric<br>Environment, 2011, 45, 338-346.                                                                                | 1.9 | 75        |
| 80 | Barriers and opportunities for passive removal of indoor ozone. Atmospheric Environment, 2011, 45, 3338-3341.                                                                                                      | 1.9 | 32        |
| 81 | Operational characteristics of residential and light-commercial air-conditioning systems in a hot and humid climate zone. Building and Environment, 2011, 46, 1972-1983.                                           | 3.0 | 53        |
| 82 | Response–relapse patterns of building occupant electricity consumption following exposure to<br>personal, contextualized and occupant peer network utilization data. Energy and Buildings, 2010, 42,<br>1329-1336. | 3.1 | 184       |
| 83 | Passive reduction of human exposure to indoor ozone. Building and Environment, 2010, 45, 445-452.                                                                                                                  | 3.0 | 57        |
| 84 | Formaldehyde in residences: long-term indoor concentrations and influencing factors. Indoor Air, 2010, 20, 196-203.                                                                                                | 2.0 | 87        |
| 85 | The Effects of Filtration on Pressure Drop and Energy Consumption in Residential HVAC Systems<br>(RP-1299). HVAC and R Research, 2010, 16, 273-294.                                                                | 0.9 | 68        |
| 86 | Cancer Risk Disparities between Hispanic and Non-Hispanic White Populations: The Role of Exposure to<br>Indoor Air Pollution. Environmental Health Perspectives, 2009, 117, 1925-1931.                             | 2.8 | 38        |
| 87 | Impact of Airflow Characteristics on Particle Resuspension from Indoor Surfaces. Aerosol Science and Technology, 2009, 43, 1022-1032.                                                                              | 1.5 | 58        |
| 88 | Does filter media type really affect BRS?. Indoor Air, 2009, 19, 346-347.                                                                                                                                          | 2.0 | 0         |
| 89 | Impact of placement of portable air cleaning devices in multizone residential environments. Building and Environment, 2009, 44, 2348-2356.                                                                         | 3.0 | 69        |
| 90 | Particle loading rates for HVAC filters, heat exchangers, and ducts. Indoor Air, 2008, 18, 209-224.                                                                                                                | 2.0 | 83        |

6

| #  | Article                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Ultrafine particle removal and generation by portable air cleaners. Atmospheric Environment, 2008, 42, 5003-5014.                                                               | 1.9 | 166       |
| 92 | Particle Resuspension During the Use of Vacuum Cleaners on Residential Carpet. Journal of Occupational and Environmental Hygiene, 2008, 5, 232-238.                             | 0.4 | 91        |
| 93 | An evaluation of the indoor air quality in bars before and after a smoking ban in Austin, Texas. Journal of Exposure Science and Environmental Epidemiology, 2007, 17, 260-268. | 1.8 | 47        |
| 94 | Ozone removal by HVAC filters. Atmospheric Environment, 2007, 41, 3151-3160.                                                                                                    | 1.9 | 73        |
| 95 | Measuring residential duct efficiency with the short-term coheat test methodology. Energy and Buildings, 2006, 38, 1076-1083.                                                   | 3.1 | 7         |
| 96 | The effectiveness of stand alone air cleaners for shelter-in-place. Indoor Air, 2005, 15, 127-134.                                                                              | 2.0 | 35        |
| 97 | Predicting particle deposition on HVAC heat exchangers. Atmospheric Environment, 2003, 37, 5587-5596.                                                                           | 1.9 | 73        |
| 98 | Integrating Ducts into the Conditioned Space: Successes and Challenges. , 2003, , 1.                                                                                            |     | 1         |
| 99 | Performance of nanofibrous media in portable air cleaners. Aerosol Science and Technology, 0, , 1-12.                                                                           | 1.5 | 4         |