Jung Sang Suh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4327428/publications.pdf Version: 2024-02-01

LUNC SANC SUH

#	Article	IF	CITATIONS
1	Simple and efficient fabrication of dimers of silver colloidal particles for surfaceâ€enhanced Raman scattering. Journal of Raman Spectroscopy, 2018, 49, 651-658.	2.5	1
2	Design and development of caffeic acid conjugated with Bombyx mori derived peptide biomaterials for anti-aging skin care applications. RSC Advances, 2017, 7, 30205-30213.	3.6	5
3	Universal substrates based on Ag colloidal particles for routine surface-enhanced Raman scattering spectral measurements. RSC Advances, 2017, 7, 28573-28579.	3.6	4
4	Enhancements inside and outside the junctions of Ag colloidal dimers. RSC Advances, 2017, 7, 37241-37247.	3.6	1
5	Plasmonic-enhanced graphene flake counter electrodes for dye-sensitized solar cells. Journal of Applied Physics, 2017, 121, .	2.5	6
6	Carbon-doped freestanding TiO ₂ nanotube arrays in dye-sensitized solar cells. New Journal of Chemistry, 2017, 41, 285-289.	2.8	17
7	Multi-Shaped Ag Nanoparticles in the Plasmonic Layer of Dye-Sensitized Solar Cells for Increased Power Conversion Efficiency. Nanomaterials, 2017, 7, 136.	4.1	40
8	Dual Functionalized Freestanding TiO2 Nanotube Arrays Coated with Ag Nanoparticles and Carbon Materials for Dye-Sensitized Solar Cells. Applied Sciences (Switzerland), 2017, 7, 576.	2.5	16
9	Ag Nanoparticle–Functionalized Open-Ended Freestanding TiO2 Nanotube Arrays with a Scattering Layer for Improved Energy Conversion Efficiency in Dye-Sensitized Solar Cells. Nanomaterials, 2016, 6, 117.	4.1	25
10	Fabrication of dispersible graphene flakes using thermal plasma jet and their thin films for solar cells. Carbon, 2016, 106, 48-55.	10.3	19
11	Recent Progress in Dye-Sensitized Solar Cells for Improving Efficiency: TiO ₂ Nanotube Arrays in Active Layer. Journal of Nanomaterials, 2015, 2015, 1-17.	2.7	47
12	Characteristics of graphene quantum dots determined by edge structures: three kinds of dots fabricated using thermal plasma jet. RSC Advances, 2015, 5, 67669-67675.	3.6	11
13	Panchromatic quasi-monolayer of Ag nanoparticles for high-efficiency dye-sensitized solar cells. RSC Advances, 2015, 5, 59895-59902.	3.6	8
14	Surface plasmon-enhanced dye-sensitized solar cells based on double-layered composite films consisting of TiO ₂ /Ag and TiO ₂ /Au nanoparticles. RSC Advances, 2015, 5, 27464-27469.	3.6	27
15	Increasing the surface area of TiO2 nanotube membranes by filling the channels with onion type carbon materials and TiCl4 for dye-sensitized solar cells. RSC Advances, 2015, 5, 74107-74114.	3.6	3
16	Size-Controllable and Low-Cost Fabrication of Graphene Quantum Dots Using Thermal Plasma Jet. ACS Nano, 2014, 8, 4190-4196.	14.6	92
17	Aggregation effect of silver nanoparticles on the energy conversion efficiency of the surface plasmon-enhanced dye-sensitized solar cells. Solar Energy, 2014, 109, 61-69.	6.1	22
18	Filling TiO2 nanoparticles in the channels of TiO2 nanotube membranes to enhance the efficiency of dye-sensitized solar cells. Chemical Physics Letters, 2011, 513, 108-111.	2.6	29

Jung Sang Suh

#	Article	IF	CITATIONS
19	A simple method to fabricate silver colloid clusters for surface-enhanced Raman scattering. Chemical Physics Letters, 2011, 511, 121-125.	2.6	14
20	Fabrication of graphene flakes composed of multi-layer graphene sheets using a thermal plasma jet system. Nanotechnology, 2010, 21, 095601.	2.6	34
21	Silver nanorods used to promote SERS as a quantitative analytical tool. Journal of Raman Spectroscopy, 2010, 41, 624-627.	2.5	35
22	Electrodeposited Silver Nanoparticles Patterned Hexagonally for SERS. , 2010, , .		0
23	Hexagonally Patterned Silver Nanoparticles Electrodeposited on an Aluminum Plate for Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C, 2010, 114, 7258-7262.	3.1	22
24	Minimum Enhancement of Surface-Enhanced Raman Scattering for Single-Molecule Detections. Journal of Physical Chemistry A, 2009, 113, 8529-8532.	2.5	22
25	A simple method to control the diameter of carbon nanotubes and the effect of the diameter in field emission. Carbon, 2008, 46, 969-973.	10.3	15
26	Enhancement at the Junction of Silver Nanorods. Langmuir, 2008, 24, 8934-8938.	3.5	34
27	Horizontally aligned carbon nanotube field emitters having a long term stability. Carbon, 2007, 45, 2917-2921.	10.3	28
28	Optimum Length of Silver Nanorods for Fabrication of Hot Spots. Journal of Physical Chemistry C, 2007, 111, 7906-7909.	3.1	49
29	Fabrication of well-ordered molecular device arrays. Chemical Physics Letters, 2006, 427, 137-141.	2.6	14
30	Diameter control of carbon nanotubes by changing the concentration of catalytic metal ion solutions. Carbon, 2005, 43, 1453-1459.	10.3	22
31	Well-ordered semiconducting linearly joined carbon nanotube devices at room temperature. Chemical Physics Letters, 2005, 402, 535-538.	2.6	4
32	Field emission from the film of the finely dispersed arc discharge black core material. Carbon, 2005, 43, 937-943.	10.3	7
33	Comparison of the field emissions between highly ordered carbon nanotubes with closed and open tips. Applied Physics Letters, 2004, 84, 825-827.	3.3	35
34	Uniform field emission from aligned carbon nanotubes prepared by CO disproportionation. Journal of Applied Physics, 2002, 92, 7519-7522.	2.5	20