Holly D Gaff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4327314/publications.pdf Version: 2024-02-01

HOLLY D CAFE

#	Article	IF	CITATIONS
1	Comparative population genetics of Amblyomma maculatum and Amblyomma americanum in the mid-Atlantic United States. Ticks and Tick-borne Diseases, 2021, 12, 101600.	1.1	4
2	Scoping review of distribution models for selected <i>Amblyomma</i> ticks and rickettsial group pathogens. PeerJ, 2021, 9, e10596.	0.9	10
3	Focus Stacking Images of Morphological Character States for Differentiating the Adults of <i>Ixodes affinis</i> and <i>Ixodes scapularis</i> (Acari: Ixodidae) in Areas of Sympatry. Journal of Medical Entomology, 2021, 58, 1941-1947.	0.9	4
4	Trends and Opportunities in Tick-Borne Disease Geography. Journal of Medical Entomology, 2021, 58, 2021-2029.	0.9	23
5	Passerine birds as hosts for Ixodes ticks infected with Borrelia burgdorferi sensu stricto in southeastern Virginia. Ticks and Tick-borne Diseases, 2021, 12, 101650.	1.1	4
6	Exploring the Niche of <i>Rickettsia montanensis</i> (Rickettsiales: Rickettsiaceae) Infection of the American Dog Tick (Acari: Ixodidae), Using Multiple Species Distribution Model Approaches. Journal of Medical Entomology, 2021, 58, 1083-1092.	0.9	12
7	Spatio-temporal modelling of tick life-stage count data with spatially varying coefficients. Geospatial Health, 2021, 16, .	0.3	0
8	A Comparison of Tick Collection Materials and Methods in Southeastern Virginia. Journal of Medical Entomology, 2021, 58, 692-698.	0.9	7
9	Application and Modeling of a Tick-Killing Robot, TickBot. STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health, 2021, , 31-57.	0.0	Ο
10	Orofacial Manifestations of Lyme Disease: A systematic review. Journal of Dental Hygiene: JDH / American Dental Hygienists' Association, 2021, 95, 23-31.	0.1	0
11	A seven-legged tick: Report of a morphological anomaly in Ixodes scapularis (Acari: Ixodidae) biting a human host from the Northeastern United States. Ticks and Tick-borne Diseases, 2020, 11, 101304.	1.1	8
12	First report of Candidatus Rickettsia mendelii in Ixodes brunneus from the United States. Ticks and Tick-borne Diseases, 2020, 11, 101309.	1.1	6
13	A Simple, Inexpensive Method for Mark-Recapture of Ixodid Ticks. Journal of Insect Science, 2020, 20, .	0.6	5
14	Survey of Rickettsia parkeri and Amblyomma maculatum associated with small mammals in southeastern Virginia. Ticks and Tick-borne Diseases, 2020, 11, 101550.	1.1	12
15	LYMESIM 2.0: An Updated Simulation of Blacklegged Tick (Acari: Ixodidae) Population Dynamics and Enzootic Transmission of Borrelia burgdorferi (Spirochaetales: Spirochaetaceae). Journal of Medical Entomology, 2020, 57, 715-727.	0.9	15
16	Urbanization and tick parasitism in birds of coastal southeastern Virginia. Journal of Wildlife Management, 2019, 83, 975-984.	0.7	4
17	A stochastic epidemic model for the dynamics of two pathogens in a single tick population. Theoretical Population Biology, 2019, 127, 75-90.	0.5	16
18	Multistate Survey of American Dog Ticks (<i>Dermacentor variabilis</i>) for <i>Rickettsia</i> Species. Vector-Borne and Zoonotic Diseases, 2019, 19, 652-657.	0.6	34

#	Article	IF	CITATIONS
19	Dynamics of two pathogens in a single tick population. Letters in Biomathematics, 2019, 6, 50-66.	0.3	1
20	Assessing the underwater survival of two tick species, Amblyomma americanum and Amblyomma maculatum. Ticks and Tick-borne Diseases, 2019, 10, 18-22.	1.1	7
21	Rickettsia parkeri infections diagnosed by eschar biopsy, Virginia, USA. Infection, 2018, 46, 559-563.	2.3	11
22	Natural history of Amblyomma maculatum in Virginia. Ticks and Tick-borne Diseases, 2018, 9, 188-195.	1.1	33
23	Natural history of Ixodes affinis in Virginia. Ticks and Tick-borne Diseases, 2018, 9, 109-119.	1.1	8
24	Review: Application of Tick Control Technologies for Blacklegged, Lone Star, and American Dog Ticks. Journal of Integrated Pest Management, 2018, 9, .	0.9	25
25	Snap, crackle, and pop: Acoustic-based model estimation of snapping shrimp populations in healthy and degraded hard-bottom habitats. Ecological Indicators, 2017, 77, 377-385.	2.6	31
26	Borrelia miyamotoi, Other Vector-Borne Agents in Cat Blood and Ticks in Eastern Maryland. EcoHealth, 2017, 14, 816-820.	0.9	23
27	A Stochastic Tick-Borne Disease Model: Exploring the Probability of Pathogen Persistence. Bulletin of Mathematical Biology, 2017, 79, 1999-2021.	0.9	29
28	Defining the Risk of Zika and Chikungunya Virus Transmission in Human Population Centers of the Eastern United States. PLoS Neglected Tropical Diseases, 2017, 11, e0005255.	1.3	54
29	Tickâ€; mosquitoâ€; and rodentâ€borne parasite sampling designs for the National Ecological Observatory Network. Ecosphere, 2016, 7, e01271.	1.0	31
30	Simultaneous identification of host, ectoparasite and pathogen <scp>DNA</scp> via inâ€solution capture. Molecular Ecology Resources, 2016, 16, 1224-1239.	2.2	31
31	Preliminary assessment of the population genetics of Ixodes affinis (Ixodida: Ixodidae) in North and Central America. Systematic and Applied Acarology, 2016, 21, 1300.	0.5	8
32	Optimal Control of Vaccination in an Age-Structured Cholera Model. , 2016, , 221-248.		8
33	Invasion of two tick-borne diseases across New England: harnessing human surveillance data to capture underlying ecological invasion processes. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160834.	1.2	26
34	New Records of <i>lxodes affinis</i> (Acari: Ixodidae) Parasitizing Avian Hosts in Southeastern Virginia. Journal of Medical Entomology, 2016, 53, 441-445.	0.9	12
35	Experimental vertical transmission of Rickettsia parkeri in the Gulf Coast tick, Amblyomma maculatum. Ticks and Tick-borne Diseases, 2015, 6, 568-573.	1.1	33
36	Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130551.	1.8	215

#	Article	IF	CITATIONS
37	TickBot: A novel robotic device for controlling tick populations in the natural environment. Ticks and Tick-borne Diseases, 2015, 6, 146-151.	1.1	13
38	<i>Rickettsia parkeri</i> Transmission to <i>Amblyomma americanum</i> by Cofeeding with <i>Amblyomma maculatum</i> (Acari: Ixodidae) and Potential for Spillover. Journal of Medical Entomology, 2015, 52, 1090-1095.	0.9	63
39	Comparative population genetics of two invading ticks: Evidence of the ecological mechanisms underlying tick range expansions. Infection, Genetics and Evolution, 2015, 35, 153-162.	1.0	12
40	Tick-borne pathogens of potential zoonotic importance in the southern African Region. Journal of the South African Veterinary Association, 2014, 85, 1084.	0.2	16
41	Quantitative factors proposed to influence the prevalence of canine tick-borne disease agents in the United States. Parasites and Vectors, 2014, 7, 417.	1.0	17
42	Planning for human papillomavirus (HPV) vaccination in sub-Saharan Africa: A modeling-based approach. Vaccine, 2014, 32, 3316-3322.	1.7	15
43	Single-tube real-time PCR assay for differentiation of Ixodes affinis and Ixodes scapularis. Ticks and Tick-borne Diseases, 2014, 5, 48-52.	1.1	15
44	<i>Ehrlichia</i> and Spotted Fever Group Rickettsiae Surveillance in <i>Amblyomma americanum</i> in Virginia Through Use of a Novel Six-Plex Real-Time PCR Assay. Vector-Borne and Zoonotic Diseases, 2014, 14, 307-316.	0.6	50
45	Prevalence of Ehrlichia chaffeensis and Ehrlichia ewingii in Amblyomma americanum and Dermacentor variabilis collected from southeastern Virginia, 2010–2011. Ticks and Tick-borne Diseases, 2014, 5, 978-982.	1.1	25
46	Ticks and spotted fever group rickettsiae of southeastern Virginia. Ticks and Tick-borne Diseases, 2014, 5, 53-57.	1.1	73
47	Additional U.S. collections of the Gulf Coast tick, Amblyomma maculatum (Acari:) Tj ETQq the State of Maryland, and data regarding this tick from surveillance of migratory songbirds in Maryland. Systematic and Applied Acarology, 2014, 19, 257.	1 1 0.784 0.5	-314 rgBT /O 25
48	Epidemic Surveillance Using an Electronic Medical Record: An Empiric Approach to Performance Improvement. PLoS ONE, 2014, 9, e100845.	1.1	8
49	Global Dynamics Emerging from Local Interactions: Agent-Based Modeling for the Life Sciences. , 2013, , 105-141.		4
50	OPTIMAL CONTROL APPLIED TO RIFT VALLEY FEVER. Natural Resource Modelling, 2013, 26, 385-402.	0.8	6
51	Identifying requirements for the invasion of a tick species and tick-borne pathogen through TICKSIM. Mathematical Biosciences and Engineering, 2013, 10, 625-635.	1.0	10
52	An Epidemiological Model of Rift Valley Fever with Spatial Dynamics. Computational and Mathematical Methods in Medicine, 2012, 2012, 1-12.	0.7	34
53	Effects of Temperature on Emergence and Seasonality of West Nile Virus in California. American Journal of Tropical Medicine and Hygiene, 2012, 86, 884-894.	0.6	114
54	In vitropropagation ofCandidatusRickettsia andeanae isolated fromAmblyomma maculatum. FEMS Immunology and Medical Microbiology, 2012, 64, 74-81.	2.7	20

#	Article	IF	CITATIONS
55	Mathematical Model to Assess the Relative Effectiveness of Rift Valley Fever Countermeasures. International Journal of Artificial Life Research, 2011, 2, 1-18.	0.1	20
56	Ixodes affinis (Acari: Ixodidae) in southeastern Virginia and implications for the spread of Borrelia burgdorferi, the agent of Lyme disease. Journal of Vector Ecology, 2011, 36, 464-467.	0.5	46
57	An age-structured model for the spread of epidemic cholera: Analysis and simulation. Nonlinear Analysis: Real World Applications, 2011, 12, 3483-3498.	0.9	36
58	<i>Rickettsia parkeri</i> in Gulf Coast Ticks, Southeastern Virginia, USA. Emerging Infectious Diseases, 2011, 17, 896-898.	2.0	60
59	Estimating the reproductive numbers for the 2008–2009 cholera outbreaks in Zimbabwe. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8767-8772.	3.3	320
60	Estimating the Impact of Human Papillomavirus (HPV) Vaccination on HPV Prevalence and Cervical Cancer Incidence in Mali. Clinical Infectious Diseases, 2011, 52, 641-645.	2.9	21
61	Use of optimal control models to predict treatment time for managing tick-borne disease. Journal of Biological Dynamics, 2011, 5, 517-530.	0.8	20
62	Preliminary analysis of an agent-based model for a tick-borne disease. Mathematical Biosciences and Engineering, 2011, 8, 463-473.	1.0	13
63	Modeling Optimal Intervention Strategies for Cholera. Bulletin of Mathematical Biology, 2010, 72, 2004-2018.	0.9	184
64	"Beyond <i>BIO2010</i> : Celebration and Opportunities―at the Intersection of Mathematics and Biology. CBE Life Sciences Education, 2010, 9, 143-147.	1.1	7
65	Mathematical Manipulative Models: In Defense of "Beanbag Biology― CBE Life Sciences Education, 2010, 9, 201-211.	1.1	17
66	Metapopulation Models in Tick-Borne Disease Transmission Modelling. Advances in Experimental Medicine and Biology, 2010, 673, 51-65.	0.8	11
67	Theory of island biogeography on a microscopic scale: organic aggregates as islands for aquatic pathogens. Aquatic Microbial Ecology, 2010, 60, 1-13.	0.9	116
68	Results from a mathematical model for human monocytic ehrlichiosis. Clinical Microbiology and Infection, 2009, 15, 15-16.	2.8	7
69	Optimal control applied to vaccination and treatment strategies for various epidemiological models. Mathematical Biosciences and Engineering, 2009, 6, 469-492.	1.0	178
70	Optimal harvesting during an invasion of a sublethal plant pathogen. Environment and Development Economics, 2007, 12, 673-686.	1.3	11
71	Value of Performing Active Surveillance Cultures on Intensive Care Unit Discharge for Detection of Methicillin-ResistantStaphylococcus aureus. Infection Control and Hospital Epidemiology, 2007, 28, 666-670.	1.0	23
72	Harvesting control in an integrodifference population model with concave growth term. Nonlinear Analysis: Hybrid Systems, 2007, 1, 417-429.	2.1	13

5

#	Article	IF	CITATIONS
73	Modeling Tick-Borne Disease: A Metapopulation Model. Bulletin of Mathematical Biology, 2007, 69, 265-288.	0.9	61
74	Optimal harvesting in an integrodifference population model. Optimal Control Applications and Methods, 2006, 27, 61-75.	1.3	10
75	Evaluation of and insights from ALFISH: a spatially explicit, landscape-level simulation of fish populations in the Everglades. Hydrobiologia, 2004, 520, 73-86.	1.0	17
76	A dynamic landscape model for fish in the Everglades and its application to restoration. Ecological Modelling, 2000, 127, 33-52.	1.2	60
77	Mathematical Model to Assess the Relative Effectiveness of Rift Valley Fever Countermeasures. , 0, , 67-82.		0