Jianzhong Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4327109/publications.pdf Version: 2024-02-01

Ιμνιζηονς Μ/μ

#	Article	IF	CITATIONS
1	Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361, .	6.0	2,424
2	Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice, 2013, 6, 4.	1.7	1,777
3	Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics, 2013, 45, 1097-1102.	9.4	1,134
4	The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature, 2009, 460, 1026-1030.	13.7	840
5	The genome sequence and structure of rice chromosome 1. Nature, 2002, 420, 312-316.	13.7	519
6	Multiple wheat genomes reveal global variation in modern breeding. Nature, 2020, 588, 277-283.	13.7	513
7	Two Adjacent Nucleotide-Binding Site–Leucine-Rich Repeat Class Genes Are Required to Confer <i>Pikm</i> -Specific Rice Blast Resistance. Genetics, 2008, 180, 2267-2276.	1.2	330
8	The Rice Annotation Project Database (RAP-DB): 2008 update. Nucleic Acids Research, 2007, 36, D1028-D1033.	6.5	295
9	A Comprehensive Rice Transcript Map Containing 6591 Expressed Sequence Tag Sites. Plant Cell, 2002, 14, 525-535.	3.1	260
10	Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science, 2018, 361, 181-186.	6.0	188
11	A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate. Scientific Reports, 2013, 3, 2149.	1.6	181
12	Artificial selection for a green revolution gene during <i>japonica</i> rice domestication. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11034-11039.	3.3	179
13	A Causal Gene for Seed Dormancy on Wheat Chromosome 4A Encodes a MAP Kinase Kinase. Current Biology, 2016, 26, 782-787.	1.8	152
14	Genetic control of inflorescence architecture during rice domestication. Nature Communications, 2013, 4, 2200.	5.8	134
15	Root angle modifications by the <i>DRO1</i> homolog improve rice yields in saline paddy fields. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21242-21250.	3.3	134
16	A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Nature Plants, 2017, 3, 17064.	4.7	133
17	The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theoretical and Applied Genetics, 2012, 125, 1047-1055.	1.8	129
18	Mitochondrial gene in the nuclear genome induces reproductive barrier in rice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1494-1499.	3.3	128

#	Article	lF	CITATIONS
19	Physical maps and recombination frequency of six rice chromosomes. Plant Journal, 2003, 36, 720-730.	2.8	126
20	Composition and Structure of the Centromeric Region of Rice Chromosome 8[W]. Plant Cell, 2004, 16, 967-976.	3.1	122
21	Localization of anchor loci representing five hundred annotated rice genes to wheat chromosomes using PLUG markers. Theoretical and Applied Genetics, 2009, 118, 499-514.	1.8	116
22	Gain of deleterious function causes an autoimmune response and Bateson–Dobzhansky–Muller incompatibility in rice. Molecular Genetics and Genomics, 2010, 283, 305-315.	1.0	103
23	Genome-Wide Transcriptome Analysis Reveals that Cadmium Stress Signaling Controls the Expression of Genes in Drought Stress Signal Pathways in Rice. PLoS ONE, 2014, 9, e96946.	1.1	102
24	Antagonistic regulation of the gibberellic acid response during stem growth in rice. Nature, 2020, 584, 109-114.	13.7	98
25	Natural Variation of the RICE FLOWERING LOCUS T 1 Contributes to Flowering Time Divergence in Rice. PLoS ONE, 2013, 8, e75959.	1.1	94
26	Loss of function at <i>RAE2</i> , a previously unidentified EPFL, is required for awnlessness in cultivated Asian rice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8969-8974.	3.3	94
27	Mitogen-Activated Protein Kinase Kinase 3 Regulates Seed Dormancy in Barley. Current Biology, 2016, 26, 775-781.	1.8	85
28	Massive parallel sequencing of mRNA in identification of unannotated salinity stress-inducible transcripts in rice (Oryza sativa L.). BMC Genomics, 2010, 11, 683.	1.2	76
29	Construction of Pseudomolecule Sequences of the aus Rice Cultivar Kasalath for Comparative Genomics of Asian Cultivated Rice. DNA Research, 2014, 21, 397-405.	1.5	74
30	Independent Domestication of Asian Rice Followed by Gene Flow from japonica to indica. Molecular Biology and Evolution, 2012, 29, 1471-1479.	3.5	70
31	Uncovering of major genetic factors generating naturally occurring variation in heading date among Asian rice cultivars. Theoretical and Applied Genetics, 2011, 122, 1199-1210.	1.8	65
32	Population Genomic Analysis and De Novo Assembly Reveal the Origin of Weedy Rice as an Evolutionary Game. Molecular Plant, 2019, 12, 632-647.	3.9	61
33	Sequencing and characterization of telomere and subtelomere regions on rice chromosomes 1S, 2S, 2L, 6L, 7S, 7L and 8S. Plant Journal, 2006, 46, 206-217.	2.8	60
34	Diversity in the complexity of phosphate starvation transcriptomes among rice cultivars based on RNA-Seq profiles. Plant Molecular Biology, 2013, 83, 523-537.	2.0	59
35	Genomics Approach to Abscisic Acid- and Gibberellin-responsive Genes in Rice. DNA Research, 2003, 10, 249-261.	1.5	57
36	Characterization of a mini core collection of Japanese wheat varieties using single-nucleotide polymorphisms generated by genotyping-by-sequencing. Breeding Science, 2016, 66, 213-225.	0.9	57

#	Article	IF	CITATIONS
37	Physical Mapping of Duplicated Genomic Regions of Two Chromosome Ends in Rice. Genetics, 1998, 150, 1595-1603.	1.2	57
38	Multiple introgression events surrounding the Hd1 flowering-time gene in cultivated rice, Oryza sativa L Molecular Genetics and Genomics, 2010, 284, 137-146.	1.0	51
39	A physical map with yeast artificial chromosome (YAC) clones covering 63% of the 12 rice chromosomes. Genome, 2001, 44, 32-37.	0.9	50
40	<i>Hd18</i> , Encoding Histone Acetylase Related to Arabidopsis FLOWERING LOCUS D, is Involved in the Control of Flowering Time in Rice. Plant and Cell Physiology, 2016, 57, 1828-1838.	1.5	47
41	mRNA-Seq Reveals a Comprehensive Transcriptome Profile of Rice under Phosphate Stress. Rice, 2011, 4, 50-65.	1.7	45
42	Next-Generation Survey Sequencing and the Molecular Organization of Wheat Chromosome 6B. DNA Research, 2014, 21, 103-114.	1.5	45
43	Random sheared fosmid library as a new genomic tool to accelerate complete finishing of rice (Oryza) Tj ETQq1 euchromatic portions of the genome. Theoretical and Applied Genetics, 2005, 111, 1596-1607.	1 0.784314 1.8	1 rgBT /Ον€r 36
44	The Sorghum Gene for Leaf Color Changes upon Wounding (<i>P</i>) Encodes a Flavanone 4-Reductase in the 3-Deoxyanthocyanidin Biosynthesis Pathway. G3: Genes, Genomes, Genetics, 2016, 6, 1439-1447.	0.8	36
45	Duplication and Loss of Function of Genes Encoding RNA Polymerase III Subunit C4 Causes Hybrid Incompatibility in Rice. G3: Genes, Genomes, Genetics, 2017, 7, 2565-2575.	0.8	36
46	Genomic adaptation of floweringâ€ŧime genes during the expansion of rice cultivation area. Plant Journal, 2018, 94, 895-909.	2.8	35
47	Positional cloning of ds1, the target leaf spot resistance gene against Bipolaris sorghicola in sorghum. Theoretical and Applied Genetics, 2011, 123, 131-142.	1.8	32
48	Improvement of barley genome annotations by deciphering the Haruna Nijo genome. DNA Research, 2016, 23, dsv033.	1.5	32
49	Convergent Loss of Awn in Two Cultivated Rice Species <i>Oryza sativa</i> and <i>Oryza glaberrima</i> ls Caused by Mutations in Different Loci. G3: Genes, Genomes, Genetics, 2015, 5, 2267-2274.	0.8	31
50	Characterization of the rice blast resistance gene Pik cloned from Kanto51. Molecular Breeding, 2012, 30, 485-494.	1.0	30
51	The Nipponbare genome and the next-generation of rice genomics research in Japan. Rice, 2016, 9, 33.	1.7	29
52	End Sequencing and Chromosomal <i>in silico</i> Mapping of BAC Clones Derived from an <i>indica</i> Rice Cultivar, Kasalath. Breeding Science, 2004, 54, 273-279.	0.9	29
53	Distinct evolutionary patterns of <i>Oryza glaberrima</i> deciphered by genome sequencing and comparative analysis. Plant Journal, 2011, 66, 796-805.	2.8	28
54	Structure, transcription and post-transcriptional regulation of the bread wheat orthologs of the barley cleistogamy gene Cly1. Theoretical and Applied Genetics, 2013, 126, 1273-1283.	1.8	27

#	Article	IF	CITATIONS
55	miR172 downregulates the translation of cleistogamy 1 in barley. Annals of Botany, 2018, 122, 251-265.	1.4	25
56	Genome-wide indel markers shared by diverse Asian rice cultivars compared to Japanese rice cultivar â€~Koshihikari'. Breeding Science, 2015, 65, 249-256.	0.9	24
57	Genomic organization of 57 ribosomal protein genes in rice (<i>Oryza sativa</i> L.) through RFLP mapping. Genome, 1995, 38, 1189-1200.	0.9	23
58	Fine Mapping of HWC2, a Complementary Hybrid Weakness Gene, and Haplotype Analysis Around the Locus in Rice. Rice, 2009, 2, 93-103.	1.7	22
59	Comparative analysis of complete orthologous centromeres from two subspecies of rice reveals rapid variation of centromere organization and structure. Plant Journal, 2009, 60, 805-819.	2.8	22
60	Expression level of a flavonoid 3′-hydroxylase gene determines pathogen-induced color variation in sorghum. BMC Research Notes, 2014, 7, 761.	0.6	22
61	An Epiallele at <i>cly1</i> Affects the Expression of Floret Closing (Cleistogamy) in Barley. Genetics, 2015, 199, 95-104.	1.2	22
62	Evolutionary dynamics and impacts of chromosome regions carrying R-gene clusters in rice. Scientific Reports, 2020, 10, 872.	1.6	22
63	Sequence comparison of distal and proximal ribosomal DNA arrays in rice (Oryza sativa L.) chromosome 9S and analysis of their flanking regions. Theoretical and Applied Genetics, 2006, 113, 419-428.	1.8	18
64	Identification and Mapping of Expressed Genes, Simple Sequence Repeats and Transposable Elements in Centromeric Regions of Rice Chromosomes. DNA Research, 2006, 13, 267-274.	1.5	18
65	DaizuBase, an integrated soybean genome database including BAC-based physical maps. Breeding Science, 2012, 61, 661-664.	0.9	18
66	A high-resolution physical map integrating an anchored chromosome with the BAC physical maps of wheat chromosome 6B. BMC Genomics, 2015, 16, 595.	1.2	18
67	Chromosome-Specific Distribution of Nucleotide Substitutions in Telomeric Repeats of Rice (Oryza) Tj ETQq1 1	0.784314	rgBT /Overloo 17
68	Structural features of two major nucleolar organizer regions (NORs), <i>Norâ€B1</i> and <i>Norâ€B2</i> , and chromosomeâ€specific rRNA gene expression in wheat. Plant Journal, 2018, 96, 1148-1159.	2.8	17
69	Sequence differences in the seed dormancy gene Qsd1 among various wheat genomes. BMC Genomics, 2017, 18, 497.	1.2	16
70	Asymmetric Distribution of Gene Expression in the Centromeric Region of Rice Chromosome 5. Frontiers in Plant Science, 2011, 2, 16.	1.7	15
71	Investigation of the Genetic Diversity of a Rice Core Collection of Japanese Landraces using Whole-Genome Sequencing. Plant and Cell Physiology, 2021, 61, 2087-2096.	1.5	15
72	A fine physical map of the rice chromosome 5. Molecular Genetics and Genomics, 2005, 274, 337-345.	1.0	14

#	Article	IF	CITATIONS
73	A <scp>BAC</scp> physical map of <i>aus</i> rice cultivar â€~ <scp>K</scp> asalath', and the mapâ€based genomic sequence of â€~ <scp>K</scp> asalath' chromosome 1. Plant Journal, 2013, 76, 699-708.	2.8	13
74	SNORKEL Genes Relating to Flood Tolerance Were Pseudogenized in Normal Cultivated Rice. Plants, 2022, 11, 376.	1.6	13
75	Characterization of chromosome ends on the basis of the structure of TrsA subtelomeric repeats in rice (Oryza sativa L.). Molecular Genetics and Genomics, 2008, 280, 19-24.	1.0	12
76	Molecular and Evolutionary Analysis of the Hd6 Photoperiod Sensitivity Gene Within Genus Oryza. Rice, 2009, 2, 56-66.	1.7	11
77	Haplotype diversity and molecular evolution of the rice Pikm locus for blast resistance. Journal of General Plant Pathology, 2010, 76, 37-42.	0.6	9
78	Development in Rice Genome Research Based on Accurate Genome Sequence. International Journal of Plant Genomics, 2008, 2008, 1-9.	2.2	8
79	Multiple Wheat Genomes Reveal Novel Gli-2 Sublocus Location and Variation of Celiac Disease Epitopes in Duplicated α-Gliadin Genes. Frontiers in Plant Science, 2021, 12, 715985.	1.7	7
80	Comparative Analysis of Rice Genome Sequence to Understand the Molecular Basis of Genome Evolution. Rice, 2008, 1, 119-126.	1.7	6
81	Composition and Structure of Rice Centromeres and Telomeres. , 2018, , 37-52.		6
82	Domain Unknown Function DUF1668-Containing Genes in Multiple Lineages Are Responsible for F1 Pollen Sterility in Rice. Frontiers in Plant Science, 2020, 11, 632420.	1.7	6
83	bex-db: Bioinformatics workbench for comprehensive analysis of barley-expressed genes. Breeding Science, 2013, 63, 430-434.	0.9	5
84	Rice Genomics: Current Status of Genome Sequencing. Novartis Foundation Symposium, 2001, 236, 28-45.	1.2	4
85	Characterization of Chromosomal Ends on the Basis of Chromosome-Specific Telomere Variants and Subtelomeric Repeats in Rice (Oryza sativa L.). , 2014, , 187-194.		4
86	The Rice Genome Sequence as an Indispensable Tool for Crop Improvement. Biotechnology in Agriculture and Forestry, 2008, , 3-12.	0.2	2
87	Completion of Rice Genome Sequencing. Japan Agricultural Research Quarterly, 2006, 40, 99-105.	0.1	1
88	Reference Genome Sequencing and Advances in Genomic Resources in Common Wheat–Chromosome 6B Project in Japan. Japan Agricultural Research Quarterly, 2021, 55, 285-294.	0.1	1
89	Fine mapping of <i>Rf5</i> region for a sorghum fertility restorer gene and microsynteny analysis across grass species. Breeding Science, 2022, 72, 141-149.	0.9	1
90	Rice Genetics and Genomics Information as the Ultimate Tool for Rice Improvement. , 2007, , 475-485.		0

91 Sequencing of Wheat Chromosome 6B: Toward Functional Genomics. , 2015, , 111-116. 0	#	Article	IF	CITATIONS
	91	Sequencing of Wheat Chromosome 6B: Toward Functional Genomics. , 2015, , 111-116.		ο