
Ines A M N Matos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4326964/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biocompatible locust bean gum as mesoporous carriers for naproxen delivery. Materials Chemistry and Physics, 2020, 239, 121973.	2.0	8
2	Carbon-Based Materials for the Development of Highly Dispersed Metal Catalysts: Towards Highly Performant Catalysts for Fine Chemical Synthesis. Catalysts, 2020, 10, 1407.	1.6	24
3	Activation of co-pyrolysis chars from rice wastes to improve the removal of Cr3+ from simulated and real industrial wastewaters. Journal of Cleaner Production, 2020, 267, 121993.	4.6	20
4	New and Advanced Porous Carbon Materials in Fine Chemical Synthesis. Emerging Precursors of Porous Carbons. Catalysts, 2019, 9, 133.	1.6	56
5	Char from Spent Tire Rubber: A Potential Adsorbent of Remazol Yellow Dye. Journal of Carbon Research, 2019, 5, 76.	1.4	7
6	Recovery of phenolic compounds from multi-component solution by a synthesized activated carbon using resorcinol and formaldehyde. Water Science and Technology, 2018, 77, 456-466.	1.2	5
7	Enhanced Catalytic Properties of Carbon supported Zirconia and Sulfated Zirconia for the Green Synthesis of Benzodiazepines. ChemCatChem, 2018, 10, 5215-5223.	1.8	15
8	Cr(III) removal from synthetic and industrial wastewaters by using co-gasification chars of rice waste streams. Bioresource Technology, 2018, 266, 139-150.	4.8	29
9	Porous carbon: A versatile material for catalysis. Catalysis Today, 2017, 285, 194-203.	2.2	94
10	Study of the removal mechanism of aquatic emergent pollutants by new bio-based chars. Environmental Science and Pollution Research, 2017, 24, 22698-22708.	2.7	12
11	Biodiesel production waste as promising biomass precursor of reusable activated carbons for caffeine removal. RSC Advances, 2016, 6, 45419-45427.	1.7	19
12	High efficacy on diclofenac removal by activated carbon produced from potato peel waste. International Journal of Environmental Science and Technology, 2016, 13, 1989-2000.	1.8	70
13	Enhancing the biodiesel manufacturing process by use of glycerin to produce hyacinth fragrance. Clean Technologies and Environmental Policy, 2016, 18, 1551-1563.	2.1	5
14	Effect of solution pH and influence of water hardness on caffeine adsorption onto activated carbons. Canadian Journal of Chemical Engineering, 2015, 93, 68-77.	0.9	56
15	Methoxylation of α-pinene over mesoporous carbons and microporous carbons: A comparative study. Microporous and Mesoporous Materials, 2014, 199, 66-73.	2.2	21
16	Structure, morphology and interfacial behaviour of ethylene/methacrylate copolymers. Journal of Polymer Research, 2013, 20, 1.	1.2	1
17	Acidâ€Activated Carbon Materials: Cheaper Alternative Catalysts for the Synthesis of Substituted Quinolines. ChemCatChem, 2013, 5, 3736-3742.	1.8	24
18	Alkoxylation of camphene over silica-occluded tungstophosphoric acid. Applied Catalysis A: General, 2013, 451, 36-42.	2.2	22

INES A M N MATOS

#	Article	IF	CITATIONS
19	Copolymerization of ethylene with unsaturated alcohols and methylmethacrylate using a silylated αâ€diimine nickel catalyst: Molecular modeling and photodegradation studies. Journal of Applied Polymer Science, 2013, 129, 1820-1832.	1.3	10
20	Intramolecular Hydroalkoxylation of Nonâ€Activated CC Bonds Catalysed by Zeolites: An Experimental and Theoretical Study. ChemSusChem, 2013, 6, 1021-1030.	3.6	10
21	Mesoporous carbon as an efficient catalyst for alcoholysis and aminolysis of epoxides. Applied Catalysis A: General, 2012, 439-440, 24-30.	2.2	28
22	SBA-15 with sulfonic acid groups as a Green Catalyst for the acetoxylation of α-pinene. Microporous and Mesoporous Materials, 2012, 163, 237-242.	2.2	17
23	Activated carbon as a catalyst for the synthesis of N-alkylimidazoles and imidazolium ionic liquids. Catalysis Today, 2012, 187, 108-114.	2.2	32
24	Activated carbons from sisal waste by chemical activation with K2CO3: Kinetics of paracetamol and ibuprofen removal from aqueous solution. Bioresource Technology, 2011, 102, 8253-8260.	4.8	132
25	Heterogeneization of alpha diimines nickel catalysts for the polymerization of ethylene and methylmethacrylate. E-Polymers, 2010, 10, .	1.3	0
26	Zeolites Efficiently Promote the Cyclization of Nonactivated Unsaturated Alcohols. Chemistry - A European Journal, 2010, 16, 12079-12082.	1.7	15
27	Reactivity of a new family of diamido-diamine cyclam-based zirconium complexes in ethylene polymerization. Inorganica Chimica Acta, 2010, 363, 1823-1830.	1.2	21
28	Methoxylation of α-pinene over heteropolyacids immobilized in silica. Applied Catalysis A: General, 2010, 373, 140-146.	2.2	24
29	Catalytic degradation of low and high density polyethylenes using ethylene polymerization catalysts: Kinetic studies using simultaneous TC/DSC analysis. Applied Catalysis A: General, 2010, 374, 170-179.	2.2	21
30	Experimental and theoretical study of pyrazole N-alkylation catalyzed by basic modified molecular sieves. Chemical Engineering Journal, 2010, 161, 377-383.	6.6	15
31	Synthesis and characterization of titanium ketimide complexes Ti(NCtBu2)nCl4â	2.2	3
32	Alkylation, Cation Formation, and Insertion Reactions in Titanium Tris(ketimide) Complexes. Organometallics, 2007, 26, 119-127.	1.1	20
33	Photodegradation of ethylene/propylene/polar monomers, co-, and terpolymers. II. Prepared by Ni catalyst systems. Journal of Applied Polymer Science, 2007, 104, 1783-1791.	1.3	2
34	Dielectric and thermal characterization of low density ethylene/10â€undecenâ€1â€ol copolymers prepared with nickel catalysts. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 2802-2812.	2.4	5
35	Ethylene polymerisation by Ni–diphosphine azine complexes. Polymer International, 2007, 56, 613-620.	1.6	3
36	Ethylene Polymerization over Transition Metal Supported Catalysts. III. Vanadium. E-Polymers, 2006, 6, .	1.3	1

INES A M N MATOS

#	Article	IF	CITATIONS
37	The effect of surfactants on the porosity of carbon xerogels. Microporous and Mesoporous Materials, 2006, 92, 38-46.	2.2	56
38	Titanium and zirconium ketimide complexes: synthesis and ethylene polymerisation catalysis. Journal of Organometallic Chemistry, 2005, 690, 874-884.	0.8	33
39	Kinetic modeling studies of ethylene polymerization reactions using supported chromium catalysts. Journal of Polymer Science Part A, 2004, 42, 3464-3472.	2.5	8
40	Ethylene polymerization over transition-metal supported catalysts. II. Cr on zeolite, silica, and charcoal: Characterization and activity studies. Journal of Polymer Science Part A, 2003, 41, 3768-3780.	2.5	14