
Zhi Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4326466/publications.pdf Version: 2024-02-01

7HI CHEN

#	Article	IF	CITATIONS
1	Synthesis and properties of microencapsulated paraffin composites with SiO2 shell as thermal energy storage materials. Chemical Engineering Journal, 2010, 163, 154-159.	6.6	260
2	Preparation and characterization of stearic acid/expanded graphite composites as thermal energy storage materials. Energy, 2010, 35, 4622-4626.	4.5	168
3	Synthesis and thermal properties of shape-stabilized lauric acid/activated carbon composites as phase change materials for thermal energy storage. Solar Energy Materials and Solar Cells, 2012, 102, 131-136.	3.0	143
4	Preparation and properties of palmitic acid/SiO2 composites with flame retardant as thermal energy storage materials. Solar Energy Materials and Solar Cells, 2011, 95, 1875-1881.	3.0	120
5	Preparation and characteristics of microencapsulated stearic acid as composite thermal energy storage material in buildings. Energy and Buildings, 2013, 62, 469-474.	3.1	99
6	Moisture buffering phenomenon and its impact on building energy consumption. Applied Thermal Engineering, 2017, 124, 337-345.	3.0	88
7	Preparation and heat transfer characteristics of microencapsulated phase change material slurry: A review. Renewable and Sustainable Energy Reviews, 2011, 15, 4624-4632.	8.2	83
8	Preparation and characterization of flame retardant n-hexadecane/silicon dioxide composites as thermal energy storage materials. Journal of Hazardous Materials, 2010, 181, 1004-1009.	6.5	79
9	Synthesis and Characterization of Microencapsulated Paraffin Microcapsules as Shape-Stabilized Thermal Energy Storage Materials. Nanoscale and Microscale Thermophysical Engineering, 2013, 17, 112-123.	1.4	64
10	Plasmon-Enhanced Infrared Emission Approaching the Theoretical Limit of Radiative Cooling Ability. Nano Letters, 2020, 20, 6974-6980.	4.5	57
11	Preparation and thermal properties of n-octadecane/molecular sieve composites as form-stable thermal energy storage materials for buildings. Energy and Buildings, 2012, 49, 423-428.	3.1	43
12	Synthesis and characteristics of hygroscopic phase change material: Composite microencapsulated phase change material (MPCM) and diatomite. Energy and Buildings, 2015, 106, 175-182.	3.1	38
13	Preparation and hygrothermal properties of composite phase change humidity control materials. Applied Thermal Engineering, 2016, 98, 1150-1157.	3.0	34
14	Dynamic charging characteristics modeling of heat storage device with heat pipe. Applied Thermal Engineering, 2011, 31, 2902-2908.	3.0	32
15	Discharging characteristics modeling of cool thermal energy storage system with coil pipes using n-tetradecane as phase change material. Applied Thermal Engineering, 2012, 37, 336-343.	3.0	32
16	Preparation and characteristics of composite phase change material (CPCM) with SiO 2 and diatomite as endothermal-hydroscopic material. Energy and Buildings, 2015, 86, 1-6.	3.1	26
17	Improving Residential Wind Environments by Understanding the Relationship between Building Arrangements and Outdoor Regional Ventilation. Atmosphere, 2017, 8, 102.	1.0	17
18	Phase Change Humidity Control Material and its Application in Buildings. Procedia Engineering, 2017, 205, 1011-1018.	1.2	14

ZHI CHEN

#	Article	IF	CITATIONS
19	Moisture Buffer Effect and its Impact on Indoor Environment. Procedia Engineering, 2017, 205, 1123-1129.	1.2	9
20	Synthesis and Characterization of Composite Phase Change Material (CPCM) with SiO2 and Diatomite as Endothermal-hygroscopic Material. Energy Procedia, 2015, 78, 201-206.	1.8	4
21	Solidification Characteristics Modeling of Phase Change Material in Plate Capsule of Cool Storage System. International Journal of Green Energy, 2011, 8, 734-747.	2.1	3
22	Synthesis and characteristics of composite phase change humidity control materials. Energy Procedia, 2017, 139, 493-498.	1.8	3
23	Doped semiconductor nanoparticles for possible daytime radiative cooling applications. Semiconductor Science and Technology, 2020, 35, 075018.	1.0	3
24	Designing a broadband terahertz plasmonic field enhancer with a homojunction of semiconductors. Applied Physics Express, 2020, 13, 012005.	1.1	2