Ilja L Kruglikov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4326136/publications.pdf

Version: 2024-02-01

471509 434195 1,021 34 17 31 citations h-index g-index papers 35 35 35 1496 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dermal adipocytes contribute to the metabolic regulation of dermal fibroblasts. Experimental Dermatology, 2021, 30, 102-111.	2.9	18
2	Preexisting and inducible endotoxemia as crucial contributors to the severity of COVID-19 outcomes. PLoS Pathogens, 2021, 17, e1009306.	4.7	29
3	Assessment of Mechanical Stress Induced by Radiofrequency Currents on Skin Interfaces. BioMed Research International, 2021, 2021, 1-5.	1.9	1
4	Caveolinâ€1 as a possible target in the treatment for acne. Experimental Dermatology, 2020, 29, 177-183.	2.9	10
5	Caveolin as a Universal Target in Dermatology. International Journal of Molecular Sciences, 2020, 21, 80.	4.1	13
6	Acoustic Waves in Axonal Membrane and Caveolins are the New Targets for Pain Treatment with High Frequency Ultrasound. Journal of Pain Research, 2020, Volume 13, 2791-2798.	2.0	1
7	The Role of Adipocytes and Adipocyteâ€Like Cells in the Severity of COVIDâ€19 Infections. Obesity, 2020, 28, 1187-1190.	3.0	201
8	Obesity and diabetes as comorbidities for COVID-19: Underlying mechanisms and the role of viral–bacterial interactions. ELife, 2020, 9, .	6.0	69
9	Caveolin-1 in skin aging – From innocent bystander to major contributor. Ageing Research Reviews, 2019, 55, 100959.	10.9	25
10	Caveolin-1 as a target in prevention and treatment of hypertrophic scarring. Npj Regenerative Medicine, 2019, 4, 9.	5.2	22
11	Caveolin-1 as a pathophysiological factor and target in psoriasis. Npj Aging and Mechanisms of Disease, 2019, 5, 4.	4.5	26
12	Dermal adipose tissue has high plasticity and undergoes reversible dedifferentiation in mice. Journal of Clinical Investigation, 2019, 129, 5327-5342.	8.2	112
13	Skin aging as a mechanical phenomenon: The main weak links. Nutrition and Healthy Aging, 2018, 4, 291-307.	1.1	45
14	Interfacial Adipose Tissue in Systemic Sclerosis. Current Rheumatology Reports, 2017, 19, 4.	4.7	19
15	Adipocyteâ€myofibroblast transition as a possible pathophysiological step in androgenetic alopecia. Experimental Dermatology, 2017, 26, 522-523.	2.9	18
16	Modeling of the spatiotemporal distribution of temperature fields in skin and subcutaneous adipose tissue after exposure to ultrasound waves of different frequencies. AIP Advances, 2017, 7, .	1.3	8
17	Role of adipose tissue in facial aging. Clinical Interventions in Aging, 2017, Volume 12, 2069-2076.	2.9	46
18	Local effects of adipose tissue in psoriasis and psoriatic arthritis. Psoriasis: Targets and Therapy, 2017, Volume 7, 17-25.	2.2	13

#	Article	IF	Citations
19	General theory of skin reinforcement. PLoS ONE, 2017, 12, e0182865.	2.5	18
20	Influence of the Dermis Thickness on the Results of the Skin Treatment with Monopolar and Bipolar Radiofrequency Currents. BioMed Research International, 2016, 2016, 1-6.	1.9	9
21	The Facial Adipose Tissue: A Revision. Facial Plastic Surgery, 2016, 32, 671-682.	0.9	68
22	Are dermal adipocytes involved in psoriasis?. Experimental Dermatology, 2016, 25, 812-813.	2.9	20
23	Dermal Adipocytes: From Irrelevance to Metabolic Targets?. Trends in Endocrinology and Metabolism, 2016, 27, 1-10.	7.1	97
24	Skin aging: are adipocytes the next target?. Aging, 2016, 8, 1457-1469.	3.1	48
25	Soft tissue fillers as nonâ€specific modulators of adipogenesis: change of the paradigm?. Experimental Dermatology, 2015, 24, 912-915.	2.9	26
26	Influence of layered skin structure on the distribution of radiofrequency currents in dermis and subcutaneous fat. AIP Advances, 2015, 5, 127122.	1.3	1
27	Microstructural Inhomogeneity of Electrical Conductivity in Subcutaneous Fat Tissue. PLoS ONE, 2015, 10, e0117072.	2.5	5
28	The Benefit of Dual-frequency Ultrasound in Patients Treated by Injection Lipolysis. Journal of Clinical and Aesthetic Dermatology, 2015, 8, 42-6.	0.1	4
29	Neocollagenesis in Non-Invasive Aesthetic Treatments. Journal of Cosmetics Dermatological Sciences and Applications, 2013, 03, 1-5.	0.2	8
30	Pilot Study into Super-Fractionation Treatment Strategy of Acne and Rosacea. Journal of Cosmetics Dermatological Sciences and Applications, 2013, 03, 197-202.	0.2	3
31	Facial Skin Rejuvenation with High Frequency Ultrasound: Multicentre Study of Dual-Frequency Ultrasound. Journal of Cosmetics Dermatological Sciences and Applications, 2012, 02, 68-73.	0.2	6
32	Dual Treatment Strategy by Venous Ulcers: Pilot Study to Dual-Frequency Ultrasound Application. Journal of Cosmetics Dermatological Sciences and Applications, 2011, 01, 157-163.	0.2	9
33	Ultrasound of 10MHz frequency as a novel strategy for skin anti-aging therapy. Medical Hypotheses, 2010, 74, 620-621.	1.5	7
34	Expression of Heat Shock Proteins after Ultrasound Exposure in HL-60 Cells. Ultrasound in Medicine and Biology, 2009, 35, 1032-1041.	1.5	16