Chi V Dang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4325858/chi-v-dang-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

82 41,210 203 209 h-index g-index citations papers 46,574 7.89 11.9 223 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
209	Epigenetic state determines inflammatory sensing in neuroblastoma <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119,	11.5	3
208	Peer Review: Value Added and Civility Cancer Research, 2022, 82, 1157-1158	10.1	O
207	Targeting cancer metabolism in the era of precision oncology. <i>Nature Reviews Drug Discovery</i> , 2021 ,	64.1	32
206	Sex, life, and death in MYC-driven lymphomagenesis. <i>Molecular Cell</i> , 2021 , 81, 3886-3887	17.6	O
205	Tilting MYC toward cancer cell death. <i>Trends in Cancer</i> , 2021 , 7, 982-994	12.5	1
204	Drugging the "Undruggable" MYCN Oncogenic Transcription Factor: Overcoming Previous Obstacles to Impact Childhood Cancers. <i>Cancer Research</i> , 2021 , 81, 1627-1632	10.1	7
203	Measuring MYC-Mediated Metabolism in Tumorigenesis. <i>Methods in Molecular Biology</i> , 2021 , 2318, 231-	23.9	1
202	Dynamic Imaging of LDH Inhibition in Tumors Reveals Rapid In[Vivo Metabolic Rewiring and Vulnerability to Combination Therapy. <i>Cell Reports</i> , 2020 , 30, 1798-1810.e4	10.6	32
201	Glutamine Skipping the Q into Mitochondria. <i>Trends in Molecular Medicine</i> , 2020 , 26, 6-7	11.5	4
200	Pyrazole-Based Lactate Dehydrogenase Inhibitors with Optimized Cell Activity and Pharmacokinetic Properties. <i>Journal of Medicinal Chemistry</i> , 2020 , 63, 10984-11011	8.3	12
199	Essentiality of non-essential amino acids for tumour cells and tumorigenesis. <i>Nature Metabolism</i> , 2019 , 1, 847-848	14.6	O
198	Autophagy: clocking in for the night shift. <i>EMBO Journal</i> , 2019 , 38,	13	2
197	mTOR Senses Intracellular pH through Lysosome Dispersion from RHEB. <i>BioEssays</i> , 2019 , 41, e1800265	4.1	3
196	Myc Regulation of a Mitochondrial Trafficking Network Mediates Tumor Cell Invasion and Metastasis. <i>Molecular and Cellular Biology</i> , 2019 , 39,	4.8	16
195	Myc-mediated transcriptional regulation of the mitochondrial chaperone TRAP1 controls primary and metastatic tumor growth. <i>Journal of Biological Chemistry</i> , 2019 , 294, 10407-10414	5.4	16
194	Transient stabilization, rather than inhibition, of MYC amplifies extrinsic apoptosis and therapeutic responses in refractory B-cell lymphoma. <i>Leukemia</i> , 2019 , 33, 2429-2441	10.7	10
193	The MYC Oncogene Cooperates with Sterol-Regulated Element-Binding Protein to Regulate Lipogenesis Essential for Neoplastic Growth. <i>Cell Metabolism</i> , 2019 , 30, 556-572.e5	24.6	52

(2017-2019)

192	synthesis of serine and glycine fuels purine nucleotide biosynthesis in human lung cancer tissues. Journal of Biological Chemistry, 2019 , 294, 13464-13477	5.4	32
191	Misregulation of Drosophila Myc Disrupts Circadian Behavior and Metabolism. <i>Cell Reports</i> , 2019 , 29, 1778-1788.e4	10.6	2
190	The role of long noncoding RNAs in cancer: the dark matter matters. <i>Current Opinion in Genetics and Development</i> , 2018 , 48, 8-15	4.9	96
189	IRE1IRNase-dependent lipid homeostasis promotes survival in Myc-transformed cancers. <i>Journal of Clinical Investigation</i> , 2018 , 128, 1300-1316	15.9	58
188	MYC Targeted Long Noncoding RNA DANCR Promotes Cancer in Part by Reducing p21 Levels. <i>Cancer Research</i> , 2018 , 78, 64-74	10.1	76
187	A PERK-miR-211 axis suppresses circadian regulators and protein synthesis to promote cancer cell survival. <i>Nature Cell Biology</i> , 2018 , 20, 104-115	23.4	63
186	Exploiting Metabolic Vulnerabilities of Cancer with Precision and Accuracy. <i>Trends in Cell Biology</i> , 2018 , 28, 201-212	18.3	65
185	Shedding Light on the Dark Cancer Genomes: Long Noncoding RNAs as Novel Biomarkers and Potential Therapeutic Targets for Cancer. <i>Molecular Cancer Therapeutics</i> , 2018 , 17, 1816-1823	6.1	26
184	MYC-induced metabolic stress and tumorigenesis. <i>Biochimica Et Biophysica Acta: Reviews on Cancer</i> , 2018 , 1870, 43-50	11.2	20
183	Acid Suspends the Circadian Clock in Hypoxia through Inhibition of mTOR. <i>Cell</i> , 2018 , 174, 72-87.e32	56.2	104
182	Correspondence: Oncogenic MYC persistently upregulates the molecular clock component REV-ERB Nature Communications, 2017, 8, 14862	17.4	9
181	c-MYC mRNA tail tale about glutamine control of transcription. <i>EMBO Journal</i> , 2017 , 36, 1806-1808	13	4
180	Drugging the QndruggableQtancer targets. <i>Nature Reviews Cancer</i> , 2017 , 17, 502-508	31.3	381
179	Treatment of Pancreatic Cancer Patient-Derived Xenograft Panel with Metabolic Inhibitors Reveals Efficacy of Phenformin. <i>Clinical Cancer Research</i> , 2017 , 23, 5639-5647	12.9	50
178	Clock Regulation of Metabolites Reveals Coupling between Transcription and Metabolism. <i>Cell Metabolism</i> , 2017 , 25, 961-974.e4	24.6	96
177	Pancreatic Cancer: "A Riddle Wrapped in a Mystery inside an Enigma". <i>Clinical Cancer Research</i> , 2017 , 23, 1629-1637	12.9	33
176	EGF induces epithelial-mesenchymal transition and cancer stem-like cell properties in human oral cancer cells via promoting Warburg effect. <i>Oncotarget</i> , 2017 , 8, 9557-9571	3.3	57
175	Repression of BET activity sensitizes homologous recombination-proficient cancers to PARP inhibition. <i>Science Translational Medicine</i> , 2017 , 9,	17.5	121

174	Feeding frenzy for cancer cells. <i>Science</i> , 2017 , 358, 862-863	33.3	7
173	Discovery and Optimization of Potent, Cell-Active Pyrazole-Based Inhibitors of Lactate Dehydrogenase (LDH). <i>Journal of Medicinal Chemistry</i> , 2017 , 60, 9184-9204	8.3	67
172	MUC-king with HIF May Rewire Pyrimidine Biosynthesis and Curb Gemcitabine Resistance in Pancreatic Cancer. <i>Cancer Cell</i> , 2017 , 32, 3-5	24.3	4
171	MYC, Metabolic Synthetic Lethality, and Cancer. <i>Recent Results in Cancer Research</i> , 2016 , 207, 73-91	1.5	20
170	Hepatocellular carcinoma redirects to ketolysis for progression under nutrition deprivation stress. <i>Cell Research</i> , 2016 , 26, 1112-1130	24.7	71
169	Turning publicly available gene expression data into discoveries using gene set context analysis. Nucleic Acids Research, 2016, 44, e8	20.1	4
168	A Time for MYC: Metabolism and Therapy. <i>Cold Spring Harbor Symposia on Quantitative Biology</i> , 2016 , 81, 79-83	3.9	31
167	Long noncoding RNA LINP1 regulates repair of DNA double-strand breaks in triple-negative breast cancer. <i>Nature Structural and Molecular Biology</i> , 2016 , 23, 522-30	17.6	183
166	From Krebs to clinic: glutamine metabolism to cancer therapy. <i>Nature Reviews Cancer</i> , 2016 , 16, 619-34	31.3	796
165	Therapeutic Targeting of the Warburg Effect in Pancreatic Cancer Relies on an Absence of p53 Function. <i>Cancer Research</i> , 2015 , 75, 3355-64	10.1	106
164	MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 6539-44	11.5	139
163	Targeting Glutamine Metabolism in Breast Cancer with Aminooxyacetate. <i>Clinical Cancer Research</i> , 2015 , 21, 3263-73	12.9	100
162	A metabolic perspective of Peto@paradox and cancer. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2015 , 370,	5.8	18
161	An Epigenetic Pathway Regulates Sensitivity of Breast Cancer Cells to HER2 Inhibition via FOXO/c-Myc Axis. <i>Cancer Cell</i> , 2015 , 28, 472-485	24.3	55
160	Comprehensive Genomic Characterization of Long Non-coding RNAs across Human Cancers. <i>Cancer Cell</i> , 2015 , 28, 529-540	24.3	465
159	Splicing and Dicing MYC-Mediated Synthetic Lethality. <i>Cancer Cell</i> , 2015 , 28, 405-406	24.3	10
158	MYC and metabolism on the path to cancer. Seminars in Cell and Developmental Biology, 2015, 43, 11-21	7.5	191
157	MYC Disrupts the Circadian Clock and Metabolism in Cancer Cells. <i>Cell Metabolism</i> , 2015 , 22, 1009-19	24.6	152

156	MYC, Metabolism, and Cancer. Cancer Discovery, 2015, 5, 1024-39	24.4	627
155	The Ketogenic Diet Does Not Affect Growth of Hedgehog Pathway Medulloblastoma in Mice. <i>PLoS ONE</i> , 2015 , 10, e0133633	3.7	18
154	Web of the extended Myc network captures metabolism for tumorigenesis. Cancer Cell, 2015, 27, 160-2	24.3	11
153	Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis. Journal of Clinical Investigation, 2015 , 125, 2293-306	15.9	251
152	MYC Regulation of Metabolism and Cancer 2015 , 101-122		1
151	Blocking lactate export by inhibiting the Myc target MCT1 Disables glycolysis and glutathione synthesis. <i>Cancer Research</i> , 2014 , 74, 908-20	10.1	219
150	Gene regulation: fine-tuned amplification in cells. <i>Nature</i> , 2014 , 511, 417-8	50.4	20
149	Tumorigenicity of hypoxic respiring cancer cells revealed by a hypoxia-cell cycle dual reporter. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 12486-91	11.5	39
148	Inhibition of glutaminase selectively suppresses the growth of primary acute myeloid leukemia cells with IDH mutations. <i>Experimental Hematology</i> , 2014 , 42, 247-51	3.1	107
147	Isotopically nonstationary 13C flux analysis of Myc-induced metabolic reprogramming in B-cells. <i>Metabolic Engineering</i> , 2013 , 15, 206-17	9.7	75
146	Stress eating and tuning out: cancer cells re-wire metabolism to counter stress. <i>Critical Reviews in Biochemistry and Molecular Biology</i> , 2013 , 48, 609-19	8.7	25
145	MYC, metabolism, cell growth, and tumorigenesis. <i>Cold Spring Harbor Perspectives in Medicine</i> , 2013 , 3,	5.4	401
144	MicroRNA deregulation in polycythemia vera and essential thrombocythemia patients. <i>Blood Cells, Molecules, and Diseases</i> , 2013 , 50, 190-5	2.1	19
143	Role of aerobic glycolysis in genetically engineered mouse models of cancer. <i>BMC Biology</i> , 2013 , 11, 3	7.3	9
142	A nontranscriptional role for HIF-11 as a direct inhibitor of DNA replication. <i>Science Signaling</i> , 2013 , 6, ra10	8.8	69
141	Evaluation of LDH-A and glutaminase inhibition in vivo by hyperpolarized 13C-pyruvate magnetic resonance spectroscopy of tumors. <i>Cancer Research</i> , 2013 , 73, 4190-5	10.1	55
140	ChIP-PED enhances the analysis of ChIP-seq and ChIP-chip data. <i>Bioinformatics</i> , 2013 , 29, 1182-9	7.2	11
139	Studying Myc@role in metabolism regulation. <i>Methods in Molecular Biology</i> , 2013 , 1012, 213-9	1.4	23

138	Normal and cancer cell metabolism: lymphocytes and lymphoma. FEBS Journal, 2012, 279, 2598-609	5.7	45
137	Design, synthesis, and pharmacological evaluation of bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide 3 (BPTES) analogs as glutaminase inhibitors. <i>Journal of Medicinal Chemistry</i> , 2012 , 55, 10551-63	8.3	129
136	MYC on the path to cancer. <i>Cell</i> , 2012 , 149, 22-35	56.2	1961
135	Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. <i>Cell Metabolism</i> , 2012 , 15, 110-21	24.6	735
134	Links between metabolism and cancer. Genes and Development, 2012, 26, 877-90	12.6	707
133	Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 8983-8	11.5	325
132	Conceptual framework for cutting the pancreatic cancer fuel supply. <i>Clinical Cancer Research</i> , 2012 , 18, 4285-90	12.9	48
131	Cancer cell metabolism: there is no ROS for the weary. <i>Cancer Discovery</i> , 2012 , 2, 304-7	24.4	20
130	Array-based nuclear run-on analysis. Methods in Molecular Biology, 2012, 809, 505-17	1.4	6
129	Alterations in nucleolar structure and gene expression programs in prostatic neoplasia are driven by the MYC oncogene. <i>American Journal of Pathology</i> , 2011 , 178, 1824-34	5.8	82
128	Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. <i>Cell</i> , 2011 , 146, 772-84	56.2	1000
127	Cell-type independent MYC target genes reveal a primordial signature involved in biomass accumulation. <i>PLoS ONE</i> , 2011 , 6, e26057	3.7	114
126	Otto Warburg@contributions to current concepts of cancer metabolism. <i>Nature Reviews Cancer</i> , 2011 , 11, 325-37	31.3	1912
125	Metabolic and electrochemical mechanisms of dimeric naphthoquinones cytotoxicity in breast cancer cells. <i>Bioorganic and Medicinal Chemistry</i> , 2011 , 19, 7057-62	3.4	12
124	Therapeutic targeting of cancer cell metabolism. <i>Journal of Molecular Medicine</i> , 2011 , 89, 205-12	5.5	133
123	Candidate exome capture identifies mutation of SDCCAG8 as the cause of a retinal-renal ciliopathy. <i>Nature Genetics</i> , 2010 , 42, 840-50	36.3	257
122	p32 (C1QBP) and cancer cell metabolism: is the Warburg effect a lot of hot air?. <i>Molecular and Cellular Biology</i> , 2010 , 30, 1300-2	4.8	32
121	MYC and Prostate Cancer. <i>Genes and Cancer</i> , 2010 , 1, 617-28	2.9	191

(2009-2010)

120	Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. <i>Cancer Research</i> , 2010 , 70, 859-62	10.1	312
119	Glutaminolysis: supplying carbon or nitrogen or both for cancer cells?. <i>Cell Cycle</i> , 2010 , 9, 3884-6	4.7	183
118	Enigmatic MYC Conducts an Unfolding Systems Biology Symphony. <i>Genes and Cancer</i> , 2010 , 1, 526-531	2.9	47
117	Induction of ectopic Myc target gene JAG2 augments hypoxic growth and tumorigenesis in a human B-cell model. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 3534-9	11.5	45
116	Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. <i>Cancer Research</i> , 2010 , 70, 8981-7	10.1	380
115	Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proceedings of the National Academy of Sciences of the United States of America, 2010 , 107, 2037-42	11.5	915
114	Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. <i>Cancer Cell</i> , 2010 , 18, 207-19	24.3	596
113	Targeting Mitochondrial Glutaminase Activity Inhibits Oncogenic Transformation. <i>Cancer Cell</i> , 2010 , 18, 397	24.3	7
112	MYC overexpression induces prostatic intraepithelial neoplasia and loss of Nkx3.1 in mouse luminal epithelial cells. <i>PLoS ONE</i> , 2010 , 5, e9427	3.7	99
111	Time-dependent c-Myc transactomes mapped by Array-based nuclear run-on reveal transcriptional modules in human B cells. <i>PLoS ONE</i> , 2010 , 5, e9691	3.7	27
110	Myc and Control of Tumor Neovascularization 2010 , 167-187		1
109	Differential Regulation of MicroRNA Expression In Polycythemia Vera CD34+ Cells. <i>Blood</i> , 2010 , 116, 4785-4785	2.2	
108	Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3384-9	11.5	319
107	MYC-induced cancer cell energy metabolism and therapeutic opportunities. <i>Clinical Cancer Research</i> , 2009 , 15, 6479-83	12.9	604
106	PKM2 tyrosine phosphorylation and glutamine metabolism signal a different view of the Warburg effect. <i>Science Signaling</i> , 2009 , 2, pe75	8.8	53
105	Edging toward new therapeutics with cyclin D1 Egl@g on cancer. Cancer Cell, 2009, 16, 361-2	24.3	
104	Have you seen?: Micro-managing and restraining pluripotent stem cells by MYC. <i>EMBO Journal</i> , 2009 , 28, 3065-6	13	5
103	c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. <i>Nature</i> , 2009 , 458, 762-5	50.4	1521

102	Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. <i>Blood</i> , 2009 , 114, 5473-80	2.2	314
101	Myoglobin tames tumor growth and spread. <i>Journal of Clinical Investigation</i> , 2009 , 119, 766-8	15.9	4
100	Widespread microRNA repression by Myc contributes to tumorigenesis. <i>Nature Genetics</i> , 2008 , 40, 43-5	036.3	1083
99	The interplay between MYC and HIF in cancer. <i>Nature Reviews Cancer</i> , 2008 , 8, 51-6	31.3	467
98	Muscle fatigue from losing your PHD. <i>Cell Metabolism</i> , 2008 , 7, 191-2	24.6	1
97	Digoxin and other cardiac glycosides inhibit HIF-1alpha synthesis and block tumor growth. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 19579-86	11.5	503
96	Antimalarial therapy prevents Myc-induced lymphoma. <i>Journal of Clinical Investigation</i> , 2008 , 118, 15-7	15.9	22
95	Global regulation of nucleotide biosynthetic genes by c-Myc. PLoS ONE, 2008, 3, e2722	3.7	187
94	Unexpected antitumorigenic effect of fenbendazole when combined with supplementary vitamins. Journal of the American Association for Laboratory Animal Science, 2008 , 47, 37-40	1.3	68
93	Discovering robust protein biomarkers for disease from relative expression reversals in 2-D DIGE data. <i>Proteomics</i> , 2007 , 7, 1197-207	4.8	19
92	HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. <i>Cancer Cell</i> , 2007 , 11, 407-20	24.3	647
91	HIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell, 2007, 12, 230-8	24.3	410
90	Isolation of bone marrow-derived stem cells using density-gradient separation. <i>Experimental Hematology</i> , 2007 , 35, 335-41	3.1	42
89	Effects of hypoxia on tumor metabolism. Cancer and Metastasis Reviews, 2007, 26, 291-8	9.6	105
88	The c-Myc target gene Rcl (C6orf108) encodes a novel enzyme, deoxynucleoside 5@monophosphate N-glycosidase. <i>Journal of Biological Chemistry</i> , 2007 , 282, 8150-6	5.4	30
87	Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. <i>Molecular and Cellular Biology</i> , 2007 , 27, 7381-93	4.8	450
86	Biology and treatment of Burkitt@lymphoma. Current Opinion in Hematology, 2007, 14, 375-81	3.3	68
85	HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. <i>Cell</i> , 2007 , 129, 111-22	56.2	898

(2004-2006)

84	The c-Myc target gene network. Seminars in Cancer Biology, 2006, 16, 253-64	12.7	806
83	Conditional deletion of c-myc does not impair liver regeneration. <i>Cancer Research</i> , 2006 , 66, 5608-12	10.1	33
82	Activation of transferrin receptor 1 by c-Myc enhances cellular proliferation and tumorigenesis. <i>Molecular and Cellular Biology</i> , 2006 , 26, 2373-86	4.8	174
81	Global mapping of c-Myc binding sites and target gene networks in human B cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 17834-9	11.5	411
80	c-myc overexpression causes anaplasia in medulloblastoma. Cancer Research, 2006, 66, 673-81	10.1	103
79	HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. <i>Cell Metabolism</i> , 2006 , 3, 177-85	24.6	2521
78	Cancer@ molecular sweet tooth and the Warburg effect. Cancer Research, 2006, 66, 8927-30	10.1	954
77	Could MYC induction of mitochondrial biogenesis be linked to ROS production and genomic instability?. <i>Cell Cycle</i> , 2005 , 4, 1465-6	4.7	42
76	Oncogenic alterations of metabolism and the Warburg effect. <i>Drug Discovery Today Disease Mechanisms</i> , 2005 , 2, 233-238		17
75	Acute promyelocytic leukemia: recent advances in therapy and molecular basis of response to arsenic therapies. <i>Current Opinion in Hematology</i> , 2005 , 12, 1-6	3.3	63
74	Arsenic suppresses gene expression in promyelocytic leukemia cells partly through Sp1 oxidation. <i>Blood</i> , 2005 , 106, 304-10	2.2	66
73	c-Myc-regulated microRNAs modulate E2F1 expression. <i>Nature</i> , 2005 , 435, 839-43	50.4	2422
72	The great MYC escape in tumorigenesis. <i>Cancer Cell</i> , 2005 , 8, 177-8	24.3	87
71	Multifaceted roles of glycolytic enzymes. <i>Trends in Biochemical Sciences</i> , 2005 , 30, 142-50	10.3	491
70	Stimulation of Myc transactivation by the TATA binding protein in promoter-reporter assays. <i>BMC Biochemistry</i> , 2005 , 6, 7	4.8	9
69	The Myc target gene JPO1/CDCA7 is frequently overexpressed in human tumors and has limited transforming activity in vivo. <i>Cancer Research</i> , 2005 , 65, 5620-7	10.1	43
68	Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. <i>Molecular and Cellular Biology</i> , 2005 , 25, 6225-34	4.8	426
67	In silico identification of transcriptional regulators associated with c-Myc. <i>Nucleic Acids Research</i> , 2004 , 32, 4955-61	20.1	23

66	Role of NADPH oxidase in arsenic-induced reactive oxygen species formation and cytotoxicity in myeloid leukemia cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 4578-83	11.5	192
65	Histopathological and molecular prognostic markers in medulloblastoma: c-myc, N-myc, TrkC, and anaplasia. <i>Journal of Neuropathology and Experimental Neurology</i> , 2004 , 63, 441-9	3.1	177
64	Evaluation of myc E-box phylogenetic footprints in glycolytic genes by chromatin immunoprecipitation assays. <i>Molecular and Cellular Biology</i> , 2004 , 24, 5923-36	4.8	248
63	hTERT gene amplification and increased mRNA expression in central nervous system embryonal tumors. <i>American Journal of Pathology</i> , 2003 , 162, 1763-9	5.8	62
62	Identification and characterization of the novel centrosome-associated protein CCCAP. <i>Gene</i> , 2003 , 303, 35-46	3.8	25
61	An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets. <i>Genome Biology</i> , 2003 , 4, R69	18.3	378
60	Development of human protein reference database as an initial platform for approaching systems biology in humans. <i>Genome Research</i> , 2003 , 13, 2363-71	9.7	823
59	Unique conformation of cancer autoantigen B23 in hepatoma: a mechanism for specificity in the autoimmune response. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 12361-6	11.5	56
58	Anoxic fibroblasts activate a replication checkpoint that is bypassed by E1a. <i>Molecular and Cellular Biology</i> , 2003 , 23, 9032-45	4.8	20
57	Increased expression of TATA-binding protein, the central transcription factor, can contribute to oncogenesis. <i>Molecular and Cellular Biology</i> , 2003 , 23, 3043-51	4.8	53
56	A strategy for identifying transcription factor binding sites reveals two classes of genomic c-Myc target sites. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 5313-8	11.5	89
55	Celebrating the physician-scientist. <i>Journal of Clinical Investigation</i> , 2003 , 112, S1-2	15.9	1
54	The c-Myc target gene PRDX3 is required for mitochondrial homeostasis and neoplastic transformation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 6649-54	11.5	156
53	c-myc Protooncogene 2002 , 555-561		9
52	Evidence for involvement of calpain in c-Myc proteolysis in vivo. <i>Archives of Biochemistry and Biophysics</i> , 2002 , 400, 151-61	4.1	30
51	Characterization of nucleophosmin (B23) as a Myc target by scanning chromatin immunoprecipitation. <i>Journal of Biological Chemistry</i> , 2001 , 276, 48285-91	5.4	94
50	A novel c-Myc-responsive gene, JPO1, participates in neoplastic transformation. <i>Journal of Biological Chemistry</i> , 2001 , 276, 48276-84	5.4	42
49	A strategy to identify differentially expressed genes using representational difference analysis and cDNA arrays. <i>Analytical Biochemistry</i> , 2001 , 288, 141-148	3.1	18

48	Translocations involving c-myc and c-myc function. <i>Oncogene</i> , 2001 , 20, 5595-610	9.2	365
47	c-myc box II mutations in Burkitt@lymphoma-derived alleles reduce cell-transformation activity and lower response to broad apoptotic stimuli. <i>Oncogene</i> , 2001 , 20, 6084-94	9.2	17
46	Hypoxia inhibits G1/S transition through regulation of p27 expression. <i>Journal of Biological Chemistry</i> , 2001 , 276, 7919-26	5.4	277
45	Arsenic inhibition of telomerase transcription leads to genetic instability. <i>Journal of Clinical Investigation</i> , 2001 , 108, 1541-7	15.9	81
44	Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. <i>Journal of Biological Chemistry</i> , 2000 , 275, 21797-800	5.4	569
43	c-Myc target genes involved in cell growth, apoptosis, and metabolism. <i>Molecular and Cellular Biology</i> , 1999 , 19, 1-11	4.8	1319
42	Cancer genetics: tumor suppressor meets oncogene. <i>Current Biology</i> , 1999 , 9, R62-5	6.3	29
41	Oncogenic alterations of metabolism. <i>Trends in Biochemical Sciences</i> , 1999 , 24, 68-72	10.3	891
40	Function of the c-Myc oncogenic transcription factor. Experimental Cell Research, 1999, 253, 63-77	4.2	297
39	c-Myc overexpression uncouples DNA replication from mitosis. <i>Molecular and Cellular Biology</i> , 1999 , 19, 5339-51	4.8	114
38	Neoplastic transformation of RK3E by mutant beta-catenin requires deregulation of Tcf/Lef transcription but not activation of c-myc expression. <i>Molecular and Cellular Biology</i> , 1999 , 19, 5696-706	4.8	265
37	Elevated extracellular calcium can prevent apoptosis via the calcium-sensing receptor. <i>Biochemical and Biophysical Research Communications</i> , 1998 , 249, 325-31	3.4	85
36	Identification of a large Myc-binding protein that contains RCC1-like repeats. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1998 , 95, 9172-7	11.5	114
35	Pancytopenia Secondary to Oxalosis in a 23-Year-Old Woman. <i>Blood</i> , 1998 , 91, 4394-4394	2.2	
34	17beta-estradiol inhibits apoptosis of endothelial cells. <i>Biochemical and Biophysical Research Communications</i> , 1997 , 237, 372-81	3.4	107
33	Mammalian BUB1 protein kinases: map positions and in vivo expression. <i>Genomics</i> , 1997 , 46, 379-88	4.3	35
32	Role of Oncogenic Transcription Factor c-Myc in Cell Cycle Regulation, Apoptosis and Metabolism. <i>Journal of Biomedical Science</i> , 1997 , 4, 269-278	13.3	1
31	Oncogenes in tumor metabolism, tumorigenesis, and apoptosis. <i>Journal of Bioenergetics and Biomembranes</i> , 1997 , 29, 345-54	3.7	89

30	Role of Oncogenic Transcription Factor c-Myc in Cell Cycle Regulation, Apoptosis and Metabolism. <i>Journal of Biomedical Science</i> , 1997 , 4, 269-278	13.3	29
29	Genomic organization of human MXI1, a putative tumor suppressor gene. <i>Genomics</i> , 1996 , 32, 466-70	4.3	30
28	Human T-cell leukemia virus type I tax masks c-Myc function through a cAMP-dependent pathway. Journal of Biological Chemistry, 1996 , 271, 9730-8	5.4	26
27	c-Myc is glycosylated at threonine 58, a known phosphorylation site and a mutational hot spot in lymphomas. <i>Journal of Biological Chemistry</i> , 1995 , 270, 18961-5	5.4	303
26	Cyclin A links c-Myc to adhesion-independent cell proliferation. <i>Journal of Biological Chemistry</i> , 1995 , 270, 15923-5	5.4	37
25	c-Myc Function in Neoplasia. <i>Medical Intelligence Unit</i> , 1995 ,		12
24	Myc Target Genes in Cell Proliferation and Programmed Cell Death. <i>Medical Intelligence Unit</i> , 1995 , 171	1-192	
23	Max Association with Myc. <i>Medical Intelligence Unit</i> , 1995 , 151-163		
22	Properties of the c-Myc Protein. <i>Medical Intelligence Unit</i> , 1995 , 109-118		
21	Localization of the human Mxi1 transcription factor gene (MXI1) to chromosome 10q24-q25. <i>Genomics</i> , 1994 , 21, 669-72	4.3	29
20	Function of the c-Myc oncoprotein. FASEB Journal, 1992, 6, 3065-72	0.9	142
19	Function of the c-Myc oncoprotein. <i>FASEB Journal</i> , 1992 , 6, 3065-72 c-myc oncoprotein function. <i>Biochimica Et Biophysica Acta: Reviews on Cancer</i> , 1991 , 1072, 103-13	0.9	142
			21
19	c-myc oncoprotein function. <i>Biochimica Et Biophysica Acta: Reviews on Cancer</i> , 1991 , 1072, 103-13 Involvement of the Quicine zipper Qegion in the oligomerization and transforming activity of	11.2	21
19 18	c-myc oncoprotein function. <i>Biochimica Et Biophysica Acta: Reviews on Cancer</i> , 1991 , 1072, 103-13 Involvement of the Quicine zipper Qegion in the oligomerization and transforming activity of human c-myc protein. <i>Nature</i> , 1989 , 337, 664-6	11.2 50.4	198
19 18 17	c-myc oncoprotein function. <i>Biochimica Et Biophysica Acta: Reviews on Cancer</i> , 1991 , 1072, 103-13 Involvement of the Quicine zipper Qegion in the oligomerization and transforming activity of human c-myc protein. <i>Nature</i> , 1989 , 337, 664-6 The normal and morbid biology of fibrinogen. <i>American Journal of Medicine</i> , 1989 , 87, 567-76 Detection and use of recombinant staphylococcal protein A fusion proteins to localize	11.250.42.4	19846
19 18 17 16	c-myc oncoprotein function. <i>Biochimica Et Biophysica Acta: Reviews on Cancer</i> , 1991 , 1072, 103-13 Involvement of the @eucine zipper@egion in the oligomerization and transforming activity of human c-myc protein. <i>Nature</i> , 1989 , 337, 664-6 The normal and morbid biology of fibrinogen. <i>American Journal of Medicine</i> , 1989 , 87, 567-76 Detection and use of recombinant staphylococcal protein A fusion proteins to localize nucleic-acid-binding domains of proteins. <i>Analytical Biochemistry</i> , 1988 , 174, 313-7 Heparin requirement for the quantitation of fibrinogen production by primary hepatocyte cultures.	11.2 50.4 2.4 3.1	198464

LIST OF PUBLICATIONS

12	Interactions of aminoacyl-tRNA synthetases in high-molecular-weight multienzyme complexes from rat liver. <i>BBA - Proteins and Proteomics</i> , 1985 , 829, 319-26		18
11	Intranuclear location of the myositis-specific Jo-1 antigen: hopping histidyl-tRNA synthetase?. <i>Arthritis and Rheumatism</i> , 1985 , 28, 839-40		1
10	A case of agnogenic myeloid metaplasia evolving into acute myelogenous leukemia associated with the development of trisomy 11 in bone marrow cells. <i>American Journal of Hematology</i> , 1985 , 19, 285-8	7.1	7
9	Protective effect of divalent cations in the plasmin degradation of fibrinogen. <i>Archives of Biochemistry and Biophysics</i> , 1985 , 238, 452-7	4.1	11
8	Rat liver histidyl-tRNA synthetase. Purification and inhibition by the myositis-specific anti-Jo-1 autoantibody. <i>Biochemical and Biophysical Research Communications</i> , 1984 , 120, 15-21	3.4	35
7	Hydrodynamic properties and structure of the rat liver 12 S arginyl- and lysyl-tRNA synthetase complex. <i>Biochemical and Biophysical Research Communications</i> , 1983 , 117, 464-9	3.4	8
6	Multienzyme complexes of eukaryotic aminoacyl-tRNA synthetases. <i>Bioscience Reports</i> , 1983 , 3, 527-38	4.1	26
5	High molecular weight complex formation of rat liver lysyl-tRNA synthetase reduces enzyme lability to thermal inactivation. <i>Biochemical and Biophysical Research Communications</i> , 1982 , 106, 44-7	3.4	10
4	High molecular mass amino acyl-tRNA synthetase complexes in eukaryotes. FEBS Letters, 1982, 142, 1-6	3.8	47
3	High molecular weight complexes of eukaryotic aminoacyl-tRNA synthetases. <i>International Journal of Biochemistry & Cell Biology</i> , 1982 , 14, 539-43		29
2	Tobacco-alcohol amblyopia: a proposed biochemical basis for pathogenesis. <i>Medical Hypotheses</i> , 1981 , 7, 1317-28	3.8	22
1	ORGANIZATION OF MAMMALIAN AMINOACYL-tRNA SYNTHETASES 1978 , 575-580		1