
Ang-Yu Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4325756/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Janus monolayers of transition metal dichalcogenides. Nature Nanotechnology, 2017, 12, 744-749.	15.6	1,459
2	High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation. ACS Nano, 2011, 5, 2332-2339.	7.3	896
3	van der Waals Epitaxy of MoS ₂ Layers Using Graphene As Growth Templates. Nano Letters, 2012, 12, 2784-2791.	4.5	888
4	Ultralow contact resistance between semimetal and monolayer semiconductors. Nature, 2021, 593, 211-217.	13.7	579
5	CoP nanosheet assembly grown on carbon cloth: A highly efficient electrocatalyst for hydrogen generation. Nano Energy, 2015, 15, 634-641.	8.2	357
6	Direct Formation of Wafer Scale Graphene Thin Layers on Insulating Substrates by Chemical Vapor Deposition. Nano Letters, 2011, 11, 3612-3616.	4.5	302
7	Highly acid-durable carbon coated Co3O4 nanoarrays as efficient oxygen evolution electrocatalysts. Nano Energy, 2016, 25, 42-50.	8.2	187
8	Graphene synthesis by chemical vapor deposition and transfer by a roll-to-roll process. Carbon, 2010, 48, 3169-3174.	5.4	179
9	Photoluminescence Enhancement and Structure Repairing of Monolayer MoSe ₂ by Hydrohalic Acid Treatment. ACS Nano, 2016, 10, 1454-1461.	7.3	179
10	Highâ€Sulfurâ€Vacancy Amorphous Molybdenum Sulfide as a High Current Electrocatalyst in Hydrogen Evolution. Small, 2016, 12, 5530-5537.	5.2	177
11	Three-Dimensional Heterostructures of MoS ₂ Nanosheets on Conducting MoO ₂ as an Efficient Electrocatalyst To Enhance Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2015, 7, 23328-23335.	4.0	150
12	Activating basal-plane catalytic activity of two-dimensional MoS2 monolayer with remote hydrogen plasma. Nano Energy, 2016, 30, 846-852.	8.2	136
13	Rugae-like FeP nanocrystal assembly on a carbon cloth: an exceptionally efficient and stable cathode for hydrogen evolution. Nanoscale, 2015, 7, 10974-10981.	2.8	133
14	Structurally Deformed MoS ₂ for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction. Advanced Materials, 2017, 29, 1703863.	11.1	107
15	Low overpotential and high current CO2 reduction with surface reconstructed Cu foam electrodes. Nano Energy, 2016, 27, 121-129.	8.2	100
16	Decoupling of CVD graphene by controlled oxidation of recrystallized Cu. RSC Advances, 2012, 2, 3008.	1.7	82
17	Enhancement of van der Waals Interlayer Coupling through Polar Janus MoSSe. Journal of the American Chemical Society, 2020, 142, 17499-17507.	6.6	80
18	Exciton Mapping at Subwavelength Scales in Two-Dimensional Materials. Physical Review Letters, 2015, 114, 107601.	2.9	79

Ang-Yu Lu

#	Article	IF	CITATIONS
19	Oneâ€Step Formation of a Single Atomicâ€Layer Transistor by the Selective Fluorination of a Graphene Film. Small, 2014, 10, 989-997.	5.2	59
20	CVD Technology for 2-D Materials. IEEE Transactions on Electron Devices, 2018, 65, 4040-4052.	1.6	47
21	Additive manufacturing of patterned 2D semiconductor through recyclable masked growth. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3437-3442.	3.3	46
22	Synergistic Rollâ€ŧoâ€Roll Transfer and Doping of CVDâ€Graphene Using Parylene for Ambientâ€Stable and Ultra‣ightweight Photovoltaics. Advanced Functional Materials, 2020, 30, 2001924.	7.8	45
23	Healing of donor defect states in monolayer molybdenum disulfide using oxygen-incorporated chemical vapour deposition. Nature Electronics, 2022, 5, 28-36.	13.1	44
24	Designing artificial two-dimensional landscapes via atomic-layer substitution. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	43
25	Repeated roll-to-roll transfer of two-dimensional materials by electrochemical delamination. Nanoscale, 2018, 10, 5522-5531.	2.8	28
26	Synthesis of Highâ€Performance Monolayer Molybdenum Disulfide at Low Temperature. Small Methods, 2021, 5, e2000720.	4.6	27
27	Strain-Correlated Localized Exciton Energy in Atomically Thin Semiconductors. ACS Photonics, 2020, 7, 1135-1140.	3.2	25
28	Soft-lock drawing of super-aligned carbon nanotube bundles for nanometre electrical contacts. Nature Nanotechnology, 2022, 17, 278-284.	15.6	24
29	Scalable Patterning of MoS ₂ Nanoribbons by Micromolding in Capillaries. ACS Applied Materials & Interfaces, 2016, 8, 20993-21001.	4.0	23
30	Unraveling the Correlation between Raman and Photoluminescence in Monolayer MoS ₂ through Machine‣earning Models. Advanced Materials, 2022, 34, .	11.1	20
31	Electron energy loss spectroscopy of excitons in two-dimensional-semiconductors as a function of temperature. Applied Physics Letters, 2016, 108, .	1.5	14
32	Waveguide-integrated mid-infrared photodetection using graphene on a scalable chalcogenide glass platform. Nature Communications, 2022, 13, .	5.8	12
33	Surface-reconstructed Cu electrode via a facile electrochemical anodization-reduction process for low overpotential CO2 reduction. Journal of Saudi Chemical Society, 2017, 21, 708-712.	2.4	8
34	Bottom-Up Synthesized All-Thermal-Catalyst Aerogels for Heat-Regenerative Air Filtration. Nano Letters, 2021, 21, 8160-8165.	4.5	6
35	Additive manufacturing assisted van der Waals integration of 3D/3D hierarchically functional nanostructures. Communications Materials, 2020, $1,.$	2.9	5