
Weichun Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4325669/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ovalbumin/carboxymethylcellulose colloids: Particle compactness and interfacial stability. Food Chemistry, 2022, 372, 131223.	4.2	16

The role of glycerol on the thermal gelation of myofibrillar protein from giant squid (Dosidicus) Tj ETQq0 0 0 rgBT $\frac{10}{4.2}$ Tf 50 702

3	Changes in properties of nano protein particles (NPP) of fish muscle stored at 4°C and its application in food quality assessment. LWT - Food Science and Technology, 2022, 155, 112968.	2.5	3
4	Preparation, characterization and antibacterial activity of new ionized chitosan. Carbohydrate Polymers, 2022, 290, 119490.	5.1	30
5	Effect of microcrystalline cellulose under different hydrolysis durations on the stability of thyme oil emulsion. Journal of Food Science, 2022, , .	1.5	0
6	A predictive model for astringency based on in vitro interactions between salivary proteins and (â~')-Epigallocatechin gallate. Food Chemistry, 2021, 340, 127845.	4.2	18
7	Physical and chemical properties of soy protein isolates treated with sodium sulphite under low temperature extrusion. International Journal of Food Science and Technology, 2021, 56, 4559-4567.	1.3	1
8	Formation of β-Lactoglobulin Self-Assemblies via Liquid–Liquid Phase Separation for Applications beyond the Biological Functions. ACS Applied Materials & Interfaces, 2021, 13, 46391-46405.	4.0	12
9	Preparation of ultra-long stable ovalbumin/sodium carboxymethylcellulose nanoparticle and loading properties of curcumin. Carbohydrate Polymers, 2021, 271, 118451.	5.1	29
10	Interfacial adsorption behavior of ovalbumin/ sodium carboxymethyl cellulose colloidal particles: The effects of preparation methods. Food Hydrocolloids, 2021, 120, 106969.	5.6	9
11	Structural characteristics and digestibility of bovine skin protein and corn starch extruded blend complexes. Journal of Food Science and Technology, 2020, 57, 1041-1048.	1.4	7
12	Molecular interactions between gelatin and mucin: Phase behaviour, thermodynamics and rheological studies. Food Hydrocolloids, 2020, 102, 105585.	5.6	11
13	Chemical physics of whey protein isolate in the presence of mucin: From macromolecular interactions to functionality. International Journal of Biological Macromolecules, 2020, 143, 573-581.	3.6	9
14	The mesoscopic structure in wheat flour dough development. Journal of Cereal Science, 2020, 95, 103087.	1.8	3
15	Physicochemical properties of protein from pearling fractions of wheat kernels. Cereal Chemistry, 2020, 97, 1084-1092.	1.1	5
16	Properties of nano protein particle in solutions of myofibrillar protein extracted from giant squid (Dosidicusgigas). Food Chemistry, 2020, 330, 127254.	4.2	13
17	Biologically-relevant interactions, phase separations and thermodynamics of chitosan–mucin binary systems. Process Biochemistry, 2020, 94, 152-163.	1.8	10
18	The application of diffusing wave spectroscopy (DWS) in soft foods. Food Hydrocolloids, 2019, 96, 671-680.	5.6	14

Weichun Pan

#	Article	IF	CITATIONS
19	Interactions between mucin and okra gum during pH cycling. Food Hydrocolloids, 2019, 95, 1-9.	5.6	13
20	Structural characteristics and rheological properties of ovalbumin-gum arabic complex coacervates. Food Chemistry, 2018, 260, 1-6.	4.2	69
21	Characterization of structure and stability of emulsions stabilized with cellulose macro/nano particles. Carbohydrate Polymers, 2018, 199, 314-319.	5.1	35
22	The characteristic and dispersion stability of nanocellulose produced by mixed acid hydrolysis and ultrasonic assistance. Carbohydrate Polymers, 2017, 165, 197-204.	5.1	91
23	Salting-in effect on muscle protein extracted from giant squid (Dosidicus gigas). Food Chemistry, 2017, 215, 256-262.	4.2	25
24	Influence of the preparation method on the structure formed by ovalbumin/gum arabic to observe the stability of oil-in-water emulsion. Food Hydrocolloids, 2017, 63, 602-610.	5.6	34
25	Physical and antimicrobial properties of thyme oil emulsions stabilized by ovalbumin and gum arabic. Food Chemistry, 2016, 212, 138-145.	4.2	36
26	Microgravity influence on the instability of phase separation in protein solution. Applied Physics Letters, 2015, 107, 123701.	1.5	2
27	The influence of low frequency of external electric field on nucleation enhancement of hen egg-white lysozyme (HEWL). Journal of Crystal Growth, 2015, 428, 35-39.	0.7	11
28	Thermodynamic mechanism of free heme action on sickle cell hemoglobin polymerization. AICHE Journal, 2015, 61, 2861-2870.	1.8	6
29	Crystal Growth of Hen Egg-White Lysozyme (HEWL) under Various Gravity Conditions. Journal of Crystal Growth, 2013, 377, 43-50.	0.7	10
30	Control of the nucleation of sickle cell hemoglobin polymers by free hematin. Faraday Discussions, 2012, 159, 87.	1.6	15
31	Does Solution Viscosity Scale the Rate of Aggregation of Folded Proteins?. Journal of Physical Chemistry Letters, 2012, 3, 1258-1263.	2.1	13
32	Free Heme and the Polymerization of Sickle Cell Hemoglobin. Biophysical Journal, 2010, 99, 1976-1985.	0.2	40
33	Origin of Anomalous Mesoscopic Phases in Protein Solutions. Journal of Physical Chemistry B, 2010, 114, 7620-7630.	1.2	95
34	Viscoelasticity in Homogeneous Protein Solutions. Physical Review Letters, 2009, 102, 058101.	2.9	97
35	Free heme in micromolar amounts enhances the attraction between sickle cell hemoglobin molecules. Biopolymers, 2009, 91, 1108-1116.	1.2	10
36	Metastable Mesoscopic Clusters in Solutions of Sickle-Cell Hemoglobin. Biophysical Journal, 2007, 92, 267-277.	0.2	110

Weichun Pan

#	Article	IF	CITATIONS
37	Two-Step Mechanism of Homogeneous Nucleation of Sickle Cell Hemoglobin Polymers. Biophysical Journal, 2007, 93, 902-913.	0.2	109
38	Metastable Liquid Clusters in Super- and Undersaturated Protein Solutions. Journal of Physical Chemistry B, 2007, 111, 3106-3114.	1.2	112
39	Nucleation of Protein Crystals under the Influence of Solution Shear Flow. Annals of the New York Academy of Sciences, 2006, 1077, 214-231.	1.8	55
40	Nucleation of ordered solid phases of proteins via a disordered high-density state: Phenomenological approach. Journal of Chemical Physics, 2005, 122, 174905.	1.2	118
41	A Metastable Prerequisite for the Growth of Lumazine Synthase Crystals. Journal of the American Chemical Society, 2005, 127, 3433-3438.	6.6	136