Stefanie Endesfelder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4325650/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	IL-22 Induces Lipopolysaccharide-Binding Protein in Hepatocytes: A Potential Systemic Role of IL-22 in Crohn's Disease. Journal of Immunology, 2007, 178, 5973-5981.	0.4	254
2	NMDA antagonist inhibits the extracellular signal-regulated kinase pathway and suppresses cancer growth. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15605-15610.	3.3	129
3	Prevention of hyperoxia-mediated pulmonary inflammation in neonatal rats by caffeine. European Respiratory Journal, 2013, 41, 966-973.	3.1	104
4	IL-19 and IL-20: two novel cytokines with importance in inflammatory diseases. Expert Opinion on Therapeutic Targets, 2007, 11, 601-612.	1.5	89
5	Neuroprotection by Caffeine in Hyperoxia-Induced Neonatal Brain Injury. International Journal of Molecular Sciences, 2017, 18, 187.	1.8	75
6	Interaction of Inflammation and Hyperoxia in a Rat Model of Neonatal White Matter Damage. PLoS ONE, 2012, 7, e49023.	1.1	74
7	Effects of moderate and deep hypothermia on RNA-binding proteins RBM3 and CIRP expressions in murine hippocampal brain slices. Brain Research, 2013, 1504, 74-84.	1.1	71
8	Neuroprotective effects of dexmedetomidine against hyperoxia-induced injury in the developing rat brain. PLoS ONE, 2017, 12, e0171498.	1.1	64
9	Caffeine protects neuronal cells against injury caused by hyperoxia in the immature brain. Free Radical Biology and Medicine, 2014, 67, 221-234.	1.3	55
10	Neuroprotective Effect of Dexmedetomidine on Hyperoxia-Induced Toxicity in the Neonatal Rat Brain. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-10.	1.9	55
11	Acute and long-term proteome changes induced by oxidative stress in the developing brain. Cell Death and Differentiation, 2006, 13, 1097-1109.	5.0	53
12	Minocycline protects the immature white matter against hyperoxia. Experimental Neurology, 2014, 254, 153-165.	2.0	45
13	Erythropoietin Modulates Autophagy Signaling in the Developing Rat Brain in an In Vivo Model of Oxygen-Toxicity. International Journal of Molecular Sciences, 2012, 13, 12939-12951.	1.8	43
14	Erythropoietin attenuates hyperoxia-induced oxidative stress in the developing rat brain. Brain, Behavior, and Immunity, 2010, 24, 792-799.	2.0	40
15	A critical role for Fas/CDâ€95 dependent signaling pathways in the pathogenesis of hyperoxiaâ€induced brain injury. Annals of Neurology, 2008, 64, 664-673.	2.8	39
16	Antioxidative effects of caffeine in a hyperoxia-based rat model of bronchopulmonary dysplasia. Respiratory Research, 2019, 20, 88.	1.4	39
17	Prevention of neonatal oxygen-induced brain damage by reduction of intrinsic apoptosis. Cell Death and Disease, 2012, 3, e250-e250.	2.7	38
18	Adolescent hyperactivity and impaired coordination after neonatal hyperoxia. Experimental Neurology, 2012, 235, 374-379.	2.0	31

STEFANIE ENDESFELDER

#	Article	IF	CITATIONS
19	Minocycline protects oligodendroglial precursor cells against injury caused by oxygenâ€glucose deprivation. Journal of Neuroscience Research, 2012, 90, 933-944.	1.3	29
20	Erythropoietin Restores Long-Term Neurocognitive Function Involving Mechanisms of Neuronal Plasticity in a Model of Hyperoxia-Induced Preterm Brain Injury. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-13.	1.9	29
21	Prevention of Oxygen-Induced Inflammatory Lung Injury by Caffeine in Neonatal Rats. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-19.	1.9	29
22	Neonatal Hyperoxia Perturbs Neuronal Development in the Cerebellum. Molecular Neurobiology, 2018, 55, 3901-3915.	1.9	28
23	Dexmedetomidine Prevents Lipopolysaccharide-Induced MicroRNA Expression in the Adult Rat Brain. International Journal of Molecular Sciences, 2017, 18, 1830.	1.8	28
24	Oligodendroglial maldevelopment in the cerebellum after postnatal hyperoxia and its prevention by minocycline. Glia, 2015, 63, 1825-1839.	2.5	26
25	Activation of caspase-1 dependent interleukins in developmental brain trauma. Neurobiology of Disease, 2007, 25, 614-622.	2.1	24
26	Hyperoxia changes the balance of the thioredoxin/peroxiredoxin system in the neonatal rat brain. Brain Research, 2012, 1484, 68-75.	1.1	23
27	Oxygen Toxicity Is Reduced by Acetylcholinesterase Inhibition in the Developing Rat Brain. Developmental Neuroscience, 2013, 35, 255-264.	1.0	21
28	Elevated p21 mRNA level in skeletal muscle of DMD patients and mdx mice indicates either an exhausted satellite cell pool or a higher p21 expression in dystrophin-deficient cells per se. Journal of Molecular Medicine, 2000, 78, 569-574.	1.7	19
29	Caffeine Protects Against Anticonvulsant-Induced Impaired Neurogenesis in the Developing Rat Brain. Neurotoxicity Research, 2018, 34, 173-187.	1.3	19
30	GABAB Receptor-Mediated Impairment of Intermediate Progenitor Maturation During Postnatal Hippocampal Neurogenesis of Newborn Rats. Frontiers in Cellular Neuroscience, 2021, 15, 651072.	1.8	16
31	Transfection of normal primary human skeletal myoblasts with p21 and p57 antisense oligonucleotides to improve their proliferation: a first step towards an alternative molecular therapy approach of Duchenne muscular dystrophy. Journal of Molecular Medicine, 2003, 81, 355-362.	1.7	15
32	Caffeine Protects Against Anticonvulsant-Induced Neurotoxicity in the Developing Rat Brain. Neurotoxicity Research, 2017, 32, 460-472.	1.3	15
33	Paracetamol (Acetaminophen) and the Developing Brain. International Journal of Molecular Sciences, 2021, 22, 11156.	1.8	15
34	Perinatal Hyperoxia and Developmental Consequences on the Lung-Brain Axis. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-17.	1.9	15
35	Repetitive Erythropoietin Treatment Improves Long-Term Neurocognitive Outcome by Attenuating Hyperoxia-Induced Hypomyelination in the Developing Brain. Frontiers in Neurology, 2020, 11, 804.	1.1	14
36	Oxygen impairs oligodendroglial development via oxidative stress and reduced expression of HIF-1α. Scientific Reports, 2017, 7, 43000.	1.6	13

#	Article	IF	CITATIONS
37	Dexmedetomidine Restores Autophagic Flux, Modulates Associated microRNAs and the Cholinergic Anti-inflammatory Pathway upon LPS-Treatment in Rats. Journal of NeuroImmune Pharmacology, 2022, 17, 261-276.	2.1	9
38	Postnatal myelination of the immature rat cingulum is regulated by GABAB receptor activity. Developmental Neurobiology, 2021, , .	1.5	9
39	Neonatal Oxidative Stress Impairs Cortical Synapse Formation and GABA Homeostasis in Parvalbumin-Expressing Interneurons. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-12.	1.9	9
40	Antisense oligonucleotides and short interfering RNAs silencing the cyclin-dependent kinase inhibitor p21 improve proliferation of Duchenne muscular dystrophy patients' primary skeletal myoblasts. Journal of Molecular Medicine, 2005, 83, 64-71.	1.7	8
41	Neurotoxic Effects of MDMA (Ecstasy) on the Developing Rodent Brain. Developmental Neuroscience, 2010, 32, 197-207.	1.0	8
42	Reduction of cortical parvalbumin-expressing GABAergic interneurons in a rodent hyperoxia model of preterm birth brain injury with deficits in social behavior and cognition. Development (Cambridge), 2021, 148, .	1.2	7
43	Physostigmine Restores Impaired Autophagy in the Rat Hippocampus after Surgery Stress and LPS Treatment. Journal of NeuroImmune Pharmacology, 2018, 13, 383-395.	2.1	6
44	Transient Improvement of Cerebellar Oligodendroglial Development in a Neonatal Hyperoxia Model by PDGFA Treatment. Developmental Neurobiology, 2019, 79, 222-235.	1.5	6
45	In vitro P38MAPK inhibition in aged astrocytes decreases reactive astrocytes, inflammation and increases nutritive capacity after oxygen-glucose deprivation. Aging, 2021, 13, 6346-6358.	1.4	6
46	The Conflicting Role of Caffeine Supplementation on Hyperoxia-Induced Injury on the Cerebellar Granular Cell Neurogenesis of Newborn Rats. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-21.	1.9	5
47	Inhibition of Acetylcholinesterase Modulates NMDA Receptor Antagonist Mediated Alterations in the Developing Brain. International Journal of Molecular Sciences, 2014, 15, 3784-3798.	1.8	4
48	Effects of progesterone on hyperoxiaâ€induced damage in mouse C8â€D1A astrocytes. Brain and Behavior, 2016, 6, e00435.	1.0	3
49	Neuroinflammation after traumatic injury to the developing brain. Scripta Scientifica Medica, 2015, 47, 47.	0.1	3
50	Adaptation of the Oxygen Sensing System during Lung Development. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-15.	1.9	3
51	Vascular endothelial growth factor polymorphism rs2010963 status does not affect patent ductus arteriosus incidence or cyclooxygenase inhibitor treatment success in preterm infants. Cardiology in the Young, 2019, 29, 893-897.	0.4	2
52	Hyperoxia-Induced Injury in Oligodendroglial Precursor Cells (OPC) is Attenuated by Minocycline. Pediatric Research, 2011, 70, 748-748.	1.1	0
53	The Protective Role of Erythropoietin in the Developing Brain. , 2012, , .		0
54	Isoflurane but not Fentanyl Causes Apoptosis in Immature Primary Neuronal Cells. Open Anesthesiology Journal, 2017, 11, 39-47.	0.4	0