
Darren M Parsons

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4325516/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Snapper Pagrus auratus (Sparidae) home range dynamics: acoustic tagging studies in a marine reserve. Marine Ecology - Progress Series, 2003, 262, 253-265.	0.9	100
2	Evidence for longâ€ŧerm site fidelity of snapper <i>(Pagrus auratus)</i> within a marine reserve. New Zealand Journal of Marine and Freshwater Research, 2001, 35, 581-590.	0.8	75
3	Snapper (<i>Chrysophrys auratus</i>): a review of life history and key vulnerabilities in New Zealand. New Zealand Journal of Marine and Freshwater Research, 2014, 48, 256-283.	0.8	69
4	Diurnal and tidal movements of snapper (Pagrus auratus, Sparidae) in an estuarine environment. Marine and Freshwater Research, 2003, 54, 931.	0.7	65
5	Responses to marine reserves: Decreased dispersion of the sparid Pagrus auratus (snapper). Biological Conservation, 2010, 143, 2039-2048.	1.9	64
6	Ocean warming has a greater effect than acidification on the early life history development and swimming performance of a large circumglobal pelagic fish. Global Change Biology, 2018, 24, 4368-4385.	4.2	63
7	Effects of elevated CO2 on early life history development of the yellowtail kingfish, Seriola lalandi, a large pelagic fish. ICES Journal of Marine Science, 2016, 73, 641-649.	1.2	44
8	A fisheries perspective of behavioural variability: differences in movement behaviour and extraction rate of an exploited sparid, snapper (<i>Pagrus auratus</i>). Canadian Journal of Fisheries and Aquatic Sciences, 2011, 68, 632-642.	0.7	43
9	Correlated Effects of Ocean Acidification and Warming on Behavioral and Metabolic Traits of a Large Pelagic Fish. Diversity, 2018, 10, 35.	0.7	41
10	Habitat complexity and predation risk determine juvenile snapper (Pagrus auratus) and goatfish (Upeneichthys lineatus) behaviour and distribution. Marine and Freshwater Research, 2007, 58, 1144.	0.7	38
11	Mussel reefs on soft sediments: a severely reduced but important habitat for macroinvertebrates and fishes in New Zealand. New Zealand Journal of Marine and Freshwater Research, 2014, 48, 48-59.	0.8	33
12	Factors affecting the recovery of soft-sediment mussel reefs in the Firth of Thames, New Zealand. Marine and Freshwater Research, 2012, 63, 78.	0.7	31
13	Disturbance-induced â€ [~] spill-in' of Caribbean spiny lobster to marine reserves. Marine Ecology - Progress Series, 2008, 371, 213-220.	0.9	31
14	Indirect effects of recreational fishing on behavior of the spiny lobster Panulirus argus. Marine Ecology - Progress Series, 2005, 303, 235-244.	0.9	31
15	Risks of shifting baselines highlighted by anecdotal accounts of New Zealand's snapper (<i>Pagrus) Tj ETQq1 1 (</i>).784314 0.8	rgBT_/Overlo
16	Fine-scale habitat change in a marine reserve, mapped using radio-acoustically positioned video transects. Marine and Freshwater Research, 2004, 55, 257.	0.7	27
17	Ocean acidification in New Zealand waters: trends and impacts. New Zealand Journal of Marine and Freshwater Research, 2018, 52, 155-195.	0.8	27
18	Do agonistic behaviours bias baited remote underwater video surveys of fish?. Marine Ecology, 2015, 36, 810-818.	0.4	25

DARREN M PARSONS

#	Article	IF	CITATIONS
19	Elevated CO2 and heatwave conditions affect the aerobic and swimming performance of juvenile Australasian snapper. Marine Biology, 2020, 167, 1.	0.7	19
20	Human and natural predators combine to alter behavior and reduce survival of Caribbean spiny lobster. Journal of Experimental Marine Biology and Ecology, 2006, 334, 196-205.	0.7	18
21	Fish Movement in a Temperate Marine Reserve: New Insights through Application of Acoustic Tracking. Marine Technology Society Journal, 2005, 39, 56-63.	0.3	17
22	The influence of habitat structure on juvenile fish in a New Zealand estuary. Marine Ecology, 2013, 34, 492-500.	0.4	16
23	Mechanisms Explaining Nursery Habitat Association: How Do Juvenile Snapper (Chrysophrys auratus) Benefit from Their Nursery Habitat?. PLoS ONE, 2015, 10, e0122137.	1.1	16
24	Scampi (Metanephrops challengeri) emergence patterns and catchability. ICES Journal of Marine Science, 2015, 72, i199-i210.	1.2	13
25	FUNCTIONAL RESPONSE OF SPORT DIVERS TO LOBSTERS WITH APPLICATION TO FISHERIES MANAGEMENT. , 2008, 18, 258-272.		12
26	The influence of habitat availability on juvenile fish abundance in a northeastern New Zealand estuary. New Zealand Journal of Marine and Freshwater Research, 2014, 48, 216-228.	0.8	12
27	Relative abundance of snapper (<i>Chrysophrys auratus</i>) across habitats within an estuarine system. New Zealand Journal of Marine and Freshwater Research, 2016, 50, 358-370.	0.8	12
28	Testing the Adaptive Potential of Yellowtail Kingfish to Ocean Warming and Acidification. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	11
29	Elevated CO2 affects anxiety but not a range of other behaviours in juvenile yellowtail kingfish. Marine Environmental Research, 2020, 157, 104863.	1.1	11
30	Elevated temperature and CO2 have positive effects on the growth and survival of larval Australasian snapper. Marine Environmental Research, 2020, 161, 105054.	1.1	9
31	Do nursery habitats provide shelter from flow for juvenile fish?. PLoS ONE, 2018, 13, e0186889.	1.1	9
32	Potential population and economic consequences of sublethal injuries in the spiny lobster fishery of the Florida Keys. Marine and Freshwater Research, 2007, 58, 166.	0.7	7
33	Benthic Structure and Pelagic Food Sources Determine Post-settlement Snapper (Chrysophrys) Tj ETQq1 1 0.78	4314.rgBT 1.2	/Oyerlock 10
34	Economic valuation of the snapper recruitment effect from a well-established temperate no-take marine reserve on adjacent fisheries. Marine Policy, 2021, 134, 104792.	1.5	6
35	Organ health and development in larval kingfish are unaffected by ocean acidification and warming. PeerJ, 2019, 7, e8266.	0.9	6
36	An uncertain future: Effects of ocean acidification and elevated temperature on a New Zealand snapper (Chrysophrys auratus) population. Marine Environmental Research, 2020, 161, 105089.	1.1	5

#	Article	IF	CITATIONS
37	The paradox of the Hauraki Gulf snapper population: Testing the nursery habitat concept. Marine Ecology, 2020, 41, e12582.	0.4	4
38	Integrating multi-disciplinary data sources relating to inshore fisheries management via a Bayesian network. Ocean and Coastal Management, 2021, 208, 105636.	2.0	4
39	Discrimination of juvenile snapper (Chrysophrys auratus) growth and nutrition via metabolomic GC-MS methods. Journal of Experimental Marine Biology and Ecology, 2018, 506, 72-81.	0.7	1