List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4325465/publications.pdf Version: 2024-02-01

DAF LOON KANC

#	Article	IF	CITATIONS
1	Nitridation-Driven Conductive Li ₄ Ti ₅ O ₁₂ for Lithium Ion Batteries. Journal of the American Chemical Society, 2008, 130, 14930-14931.	6.6	405
2	Synthesis and characterization of CuO nanowires by a simple wet chemical method. Nanoscale Research Letters, 2012, 7, 70.	3.1	362
3	Growth of High-Crystalline, Single-Layer Hexagonal Boron Nitride on Recyclable Platinum Foil. Nano Letters, 2013, 13, 1834-1839.	4.5	336
4	A Reversible pH-Driven DNA Nanoswitch Array. Journal of the American Chemical Society, 2006, 128, 2067-2071.	6.6	213
5	Nanoscale memory cell based on a nanoelectromechanical switched capacitor. Nature Nanotechnology, 2008, 3, 26-30.	15.6	154
6	Nanoelectromechanical switches with vertically aligned carbon nanotubes. Applied Physics Letters, 2005, 87, 163114.	1.5	153
7	Surface-Stress-Induced Mott Transition and Nature of Associated Spatial Phase Transition in Single Crystalline VO ₂ Nanowires. Nano Letters, 2009, 9, 3392-3397.	4.5	150
8	Structural and electrochemical characterization of α-MoO3 nanorod-based electrochemical energy storage devices. Electrochimica Acta, 2010, 56, 376-380.	2.6	135
9	Flexible single-electrode triboelectric nanogenerators with MXene/PDMS composite film for biomechanical motion sensors. Nano Energy, 2020, 78, 105383.	8.2	131
10	Enhanced Power Output of a Triboelectric Nanogenerator using Poly(dimethylsiloxane) Modified with Graphene Oxide and Sodium Dodecyl Sulfate. ACS Applied Materials & Interfaces, 2018, 10, 25263-25272.	4.0	126
11	High performance ZnO nanowire field effect transistor using self-aligned nanogap gate electrodes. Applied Physics Letters, 2006, 89, 263102.	1.5	122
12	Direct Observation of the Structural Component of the Metalâ^'Insulator Phase Transition and Growth Habits of Epitaxially Grown VO2 Nanowires. Nano Letters, 2007, 7, 1570-1574.	4.5	119
13	lce-Templated MXene/Ag–Epoxy Nanocomposites as High-Performance Thermal Management Materials. ACS Applied Materials & Interfaces, 2020, 12, 24298-24307.	4.0	117
14	An Addressable Antibody Nanoarray Produced on a Nanostructured Surface. Journal of the American Chemical Society, 2004, 126, 6508-6509.	6.6	102
15	Three-dimensional crystalline SiC nanowire flowers. Nanotechnology, 2004, 15, 996-999.	1.3	98
16	Enhanced electrochemical performance of porous Co-doped TiO2 nanomaterials prepared by a solvothermal method. Microporous and Mesoporous Materials, 2019, 273, 148-155.	2.2	98
17	Sub-10 nm Electron Beam Nanolithography Using Spin-Coatable TiO2 Resists. Nano Letters, 2003, 3, 1587-1591.	4.5	96
18	Controllable Josephson current through a pseudospin-valve structure. Applied Physics Letters, 2004, 84, 1153-1155.	1.5	90

#	Article	IF	CITATIONS
19	Design and evaluation of novel Zn doped mesoporous TiO2 based anode material for advanced lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 17625.	6.7	90
20	Reversibly Light-Modulated Dirac Point of Graphene Functionalized with Spiropyran. ACS Nano, 2012, 6, 9207-9213.	7.3	85
21	PMMA-Etching-Free Transfer of Wafer-scale Chemical Vapor Deposition Two-dimensional Atomic Crystal by a Water Soluble Polyvinyl Alcohol Polymer Method. Scientific Reports, 2016, 6, 33096.	1.6	83
22	Ultrahigh-energy and stable supercapacitors based on intertwined porous MoO3–MWCNT nanocomposites. Electrochimica Acta, 2011, 58, 76-80.	2.6	80
23	Layer by layer assembly of ultrathin V2O5 anchored MWCNTs and graphene on textile fabrics for fabrication of high energy density flexible supercapacitor electrodes. Nanoscale, 2014, 6, 4125.	2.8	80
24	Dynamic Shadow Mask Technique:Â A Universal Tool for Nanoscience. Nano Letters, 2005, 5, 15-20.	4.5	79
25	Flickering Analysis of Erythrocyte Mechanical Properties: Dependence on Oxygenation Level, Cell Shape, and Hydration Level. Biophysical Journal, 2009, 97, 1606-1615.	0.2	79
26	Planar superconductor-normal-superconductor Josephson junctions in MgB2. Applied Physics Letters, 2001, 79, 3464-3466.	1.5	74
27	Indium Hydroxide and Indium Oxide Nanospheres, Nanoflowers, Microcubes, and Nanorods: Synthesis and Optical Properties. Crystal Growth and Design, 2008, 8, 2312-2317.	1.4	72
28	Molecular Recognition and Specific Interactions for Biosensing Applications. Sensors, 2008, 8, 6605-6641.	2.1	72
29	Poly(dimethylsiloxane)/ZnO Nanoflakes/Three-Dimensional Graphene Heterostructures for High-Performance Flexible Energy Harvesters with Simultaneous Piezoelectric and Triboelectric Generation. ACS Applied Materials & Interfaces, 2018, 10, 32281-32288.	4.0	72
30	CuS Nanosheets Decorated with CoS ₂ Nanoparticles as an Efficient Electrocatalyst for Enhanced Hydrogen Evolution at All pH Values. ACS Sustainable Chemistry and Engineering, 2019, 7, 14016-14022.	3.2	70
31	MoO3 and Cu0.33MoO3 nanorods for unprecedented UV/Visible light photocatalysis. Chemical Communications, 2010, 46, 4324.	2.2	69
32	Ink-jet printed ZnO nanowire field effect transistors. Applied Physics Letters, 2007, 91, 043109.	1.5	68
33	Facile synthesis of core–shell SnO2/V2O5 nanowires and their efficient photocatalytic property. Materials Chemistry and Physics, 2010, 124, 619-622.	2.0	66
34	Ultrahigh Output Piezoelectric and Triboelectric Hybrid Nanogenerators Based on ZnO Nanoflakes/Polydimethylsiloxane Composite Films. ACS Applied Materials & Interfaces, 2018, 10, 44415-44420.	4.0	66
35	Resistance of a domain wall in La0.7Ca0.3MnO3. Journal of Applied Physics, 1999, 86, 6287-6290.	1.1	65
36	Fabrication of nanoscale heterostructure devices with a focused ion beam microscope. Nanotechnology, 2003, 14, 630-632.	1.3	63

#	Article	IF	CITATIONS
37	Control Synthesis of Silver Nanosheets, Chainlike Sheets, and Microwires via a Simple Solventâ^ Thermal Method. Crystal Growth and Design, 2007, 7, 900-904.	1.4	63
38	High-Resolution Contact Printing with Dendrimers. Nano Letters, 2002, 2, 347-349.	4.5	62
39	Sub-10 nm High-Aspect-Ratio Patterning of ZnO Using an Electron Beam. Advanced Materials, 2005, 17, 1757-1761.	11.1	62
40	Well-designed Te/SnS2/Ag artificial nanoleaves for enabling and enhancing visible-light driven overall splitting of pure water. Nano Energy, 2017, 39, 539-545.	8.2	61
41	Focused ion beam fabrication of silicon print masters. Nanotechnology, 2003, 14, 220-223.	1.3	58
42	A stable and highly efficient visible-light-driven hydrogen evolution porous CdS/WO3/TiO2 photocatalysts. Materials Characterization, 2018, 142, 43-49.	1.9	58
43	Tin oxide coating on molybdenum oxide nanowires for high performance supercapacitor devices. Electrochimica Acta, 2012, 72, 134-137.	2.6	56
44	Flexible Supercapacitor-Type Rectifier-free Self-Charging Power Unit Based on a Multifunctional Polyvinylidene Fluoride–ZnO–rGO Piezoelectric Matrix. ACS Applied Materials & Interfaces, 2020, 12, 20891-20900.	4.0	55
45	Mesoporous TiO ₂ Spheres Interconnected by Multiwalled Carbon Nanotubes as an Anode for High-Performance Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 3676-3683.	4.0	54
46	Growth of three dimensional flower-like molybdenum disulfide hierarchical structures on graphene/carbon nanotube network: An advanced heterostructure for energy storage devices. Journal of Power Sources, 2015, 280, 39-46.	4.0	51
47	Synthesis of porous MoS2/CdSe/TiO2 photoanodes for photoelectrochemical water splitting. Microporous and Mesoporous Materials, 2019, 284, 403-409.	2.2	50
48	A comparative study of supercapacitive performances of nickel cobalt layered double hydroxides coated on ZnO nanostructured arrays on textile fibre as electrodes for wearable energy storage devices. Nanoscale, 2014, 6, 2434.	2.8	49
49	Fabrication of Three-Dimensional Surface Structures with Highly Fluorescent Quantum Dots by Surface-Templated Layer-by-Layer Assembly. Advanced Materials, 2005, 17, 1243-1248.	11.1	45
50	Interfacial Microenvironment Modulation Enhancing Catalytic Kinetics of Binary Metal Sulfides Heterostructures for Advanced Water Splitting Electrocatalysts. Small Methods, 2022, 6, e2101186.	4.6	45
51	Evidence for the immobile bipolaron formation in the paramagnetic state of the magnetoresistive manganites. Physical Review B, 2000, 62, R11949-R11952.	1.1	43
52	Ultraviolet–visible near-field microscopy of phase-separated blends of polyfluorene-based conjugated semiconductors. Applied Physics Letters, 2001, 79, 833-835.	1.5	41
53	Ultra-thin Solution-based coating of Molybdenum Oxide on Multiwall Carbon Nanotubes for High-performance Supercapacitor Electrodes. Electrochimica Acta, 2014, 118, 138-142.	2.6	40
54	Synthesis of ultra-thin tellurium nanoflakes on textiles for high-performance flexible and wearable nanogenerators. Applied Surface Science, 2017, 392, 1055-1061.	3.1	40

#	Article	IF	CITATIONS
55	Flexible, transparent and exceptionally high power output nanogenerators based on ultrathin ZnO nanoflakes. Nanoscale, 2016, 8, 5059-5066.	2.8	39
56	Highly efficient photoelectrochemical response by sea-urchin shaped ZnO/TiO ₂ nano/micro hybrid heterostructures co-sensitized with CdS/CdSe. Journal of Materials Chemistry A, 2014, 2, 6474-6479.	5.2	38
57	Conformal coating of ultrathin Ni(OH)2 on ZnO nanowires grown on textile fiber for efficient flexible energy storage devices. RSC Advances, 2014, 4, 6324.	1.7	38
58	Molybdenum Disulfide Nanosheets Interconnected Nitrogen-Doped Reduced Graphene Oxide Hydrogel: A High-Performance Heterostructure for Lithium-Ion Batteries. Electrochimica Acta, 2016, 193, 128-136.	2.6	38
59	A high-output flexible triboelectric nanogenerator based on polydimethylsiloxane/three-dimensional bilayer graphene/carbon cloth composites. Journal of Materials Chemistry A, 2020, 8, 17150-17155.	5.2	38
60	Hybrid energy harvester based on nanopillar solar cells and PVDF nanogenerator. Nanotechnology, 2013, 24, 175402.	1.3	37
61	A facile sol–gel method for synthesis of porous Nd-doped TiO2 monolith with enhanced photocatalytic activity under UV–Vis irradiation. Microporous and Mesoporous Materials, 2013, 182, 87-94.	2.2	35
62	Pulsed laser deposition of epitaxial YBa2Cu3O7â^'y/ oxide multilayers onto textured NiFe substrates for coated conductor applications. Superconductor Science and Technology, 2002, 15, 598-605.	1.8	34
63	Controlled growth of vertically aligned ZnO nanowires with different crystal orientation of the ZnO seed layer. Nanotechnology, 2008, 19, 235601.	1.3	34
64	A template method for synthesis of porous Sn-doped TiO2 monolith and its enhanced photocatalytic activity. Materials Letters, 2013, 93, 419-422.	1.3	34
65	Directly coupled superconducting quantum interference device magnetometer fabricated in magnesium diboride by focused ion beam. Applied Physics Letters, 2002, 81, 102-104.	1.5	33
66	A Controlled Method to Synthesize Hybrid In2O3/Ag Nanochains and Nanoparticles: Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C, 2009, 113, 9998-10004.	1.5	33
67	Pyramid-like CdS nanoparticles grown on porous TiO2 monolith: An advanced photocatalyst for H2 production. Electrochimica Acta, 2017, 250, 99-107.	2.6	33
68	Enhanced Interfacial Charge Transfer and Separation Rate based on Sub 10 nm MoS ₂ Nanoflakes In Situ Grown on Graphitic ₃ N ₄ . Advanced Materials Interfaces, 2019, 6, 1900554.	1.9	33
69	Nanoscale capacitors based on metal-insulator-carbon nanotube-metal structures. Applied Physics Letters, 2005, 87, 263103.	1.5	32
70	Stress-induced domain dynamics and phase transitions in epitaxially grown VO ₂ nanowires. Nanotechnology, 2012, 23, 205707.	1.3	32
71	Highly efficient oxygen evolution electrocatalysts based on nanosheet-shaped CuS in situ grown on carbon cloth. Ceramics International, 2019, 45, 10664-10671.	2.3	32
72	Synthesis of single-crystalline sodium vanadate nanowires based on chemical solution deposition method. Materials Chemistry and Physics, 2015, 165, 19-24.	2.0	31

#	Article	IF	CITATIONS
73	Enhanced charge separation of CuS and CdS quantum-dot-cosensitized porous TiO2-based photoanodes for photoelectrochemical water splitting. Ceramics International, 2018, 44, 3099-3106.	2.3	31
74	Fluorescence scanning nearâ€field optical microscopy of polyfluorene composites. Journal of Microscopy, 2001, 202, 433-438.	0.8	29
75	Realization and properties of YBa2Cu3O7â^î^Josephson junctions by metal masked ion damage technique. Applied Physics Letters, 2002, 80, 814-816.	1.5	29
76	Controlled synthesis of anatase TiO2 nano-octahedra and nanospheres: shape-dependent effects on the optical and electrochemical properties. CrystEngComm, 2011, 13, 4270.	1.3	28
77	Ultra-thin and uniform coating of vanadium oxide on multiwall carbon nanotubes through solution based approach for high-performance electrochemical supercapacitors. Electrochimica Acta, 2013, 111, 400-404.	2.6	28
78	Control of Multilevel Resistance in Vanadium Dioxide by Electric Field Using Hybrid Dielectrics. ACS Applied Materials & Interfaces, 2017, 9, 13571-13576.	4.0	28
79	Local Probing of Photocurrent and Photoluminescence in a Phase-Separated Conjugated-Polymer Blend by Means of Near-Field Excitation. Advanced Functional Materials, 2006, 16, 469-476.	7.8	27
80	Controlled synthesis of nanoplate, nanoprism and nanopyramid-shaped CdSe decorated on porous TiO2 photocatalysts for visible-light-driven hydrogen evolution. Ceramics International, 2018, 44, 12555-12563.	2.3	26
81	Facile synthesis of cactus-shaped CdS-Cu9S5 heterostructure on copper foam with enhanced photoelectrochemical performance. Applied Surface Science, 2019, 492, 849-855.	3.1	25
82	Tailoring Highly Thermal Conductive Properties of Te/MoS ₂ /Ag Heterostructure Nanocomposites Using a Bottomâ€Up Approach. Advanced Electronic Materials, 2019, 5, 1800548.	2.6	25
83	High-performance, flexible planar microsupercapacitors based on crosslinked polyaniline using laser printing lithography. Carbon, 2020, 161, 117-122.	5.4	25
84	Controlled Assembly for Well-Defined 3D Bioarchitecture Using Two Active Enzymes. ACS Nano, 2010, 4, 1580-1586.	7.3	24
85	Ultrasensitive single crystalline TeO ₂ nanowire based hydrogen gas sensors. Journal of Materials Chemistry A, 2014, 2, 5394-5398.	5.2	24
86	Large-Area High-Quality AB-Stacked Bilayer Graphene on h-BN/Pt Foil by Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2018, 10, 29069-29075.	4.0	24
87	Catalyst patterning methods for surface-bound chemical vapor deposition of carbon nanotubes. Applied Physics A: Materials Science and Processing, 2005, 81, 1559-1567.	1.1	23
88	The influence of surface chemical dynamics on electrical and optical properties of ZnO nanowire field effect transistors. Nanotechnology, 2009, 20, 505202.	1.3	23
89	Growth of single-crystalline β-Na0.33V2O5 nanowires on conducting substrate: A binder-free electrode for energy storage devices. Journal of Power Sources, 2014, 251, 237-242.	4.0	23
90	Fabrication of Subâ€10 nm Metallic Lines of Low Lineâ€Width Roughness by Hydrogen Reduction of Patterned Metal–Organic Materials. Advanced Functional Materials, 2010, 20, 2317-2323.	7.8	22

#	Article	IF	CITATIONS
91	MoO3-MWCNT nanocomposite photocatalyst with control of light-harvesting under visible light and natural sunlight irradiation. Journal of Materials Chemistry, 2012, 22, 20549.	6.7	22
92	Photocatalytic properties of shape-controlled ultra-long elemental Te nanowires synthesized via a facile hydrothermal method. Materials Letters, 2014, 116, 341-344.	1.3	21
93	Nanoflower-like MoS2 grown on porous TiO2 with enhanced hydrogen evolution activity. Journal of Alloys and Compounds, 2020, 821, 153203.	2.8	21
94	A High Catalytic Activity Photocatalysts Based on Porous Metal Sulfides/TiO ₂ Heterostructures. Advanced Materials Interfaces, 2021, 8, .	1.9	21
95	Influence of the Foundation Layer on the Layer-by-Layer Assembly of Poly-I-lysine and Poly(styrenesulfonate) and Its Usage in the Fabrication of 3D Microscale Features. Langmuir, 2004, 20, 9089-9094.	1.6	20
96	Nanoelectromechanical switch with low voltage drive. Applied Physics Letters, 2008, 93, .	1.5	20
97	Low-Programmable-Voltage Nonvolatile Memory Devices Based on Omega-shaped Gate Organic Ferroelectric P(VDF-TrFE) Field Effect Transistors Using p-type Silicon Nanowire Channels. Nano-Micro Letters, 2015, 7, 35-41.	14.4	20
98	Porous WO3 monolith-based photoanodes for high-efficient photoelectrochemical water splitting. Ceramics International, 2019, 45, 7302-7308.	2.3	20
99	Electron Beam Nanolithography of Â-Ketoester Modified Aluminium Tri-Sec-Butoxide. Journal of Sol-Gel Science and Technology, 2004, 29, 5-10.	1.1	19
100	Growth of Graphene/h-BN Heterostructures on Recyclable Pt Foils by One-Batch Chemical Vapor Deposition. Scientific Reports, 2017, 7, 17083.	1.6	19
101	Oxygen stoichiometry controlled sharp insulator-metal transition in highly oriented VO2/TiO2 thin films. Current Applied Physics, 2018, 18, 652-657.	1.1	19
102	Synthesis of carbon nanostructures with unique morphologies via a reduction-catalysis reaction route. Materials Research Bulletin, 2006, 41, 1785-1790.	2.7	18
103	Decorating ZnO nanoflakes on carbon cloth: Free-standing, highly stable lithium-ion battery anodes. Ceramics International, 2019, 45, 15906-15912.	2.3	18
104	Effect of oxygen content on the structural, transport, and magnetic properties of La1â^îMn1â^îO3 thin films. Journal of Applied Physics, 1999, 86, 6327-6330.	1.1	16
105	Realization and properties of MgB2 metal-masked ion damage junctions. Applied Physics Letters, 2002, 81, 3600-3602.	1.5	16
106	A Nanogripper Employing Aligned Multiwall Carbon Nanotubes. IEEE Nanotechnology Magazine, 2008, 7, 389-393.	1.1	16
107	Density control of ZnO nanowires grown using Au-PMMA nanoparticles and their growth behavior. Nanotechnology, 2009, 20, 085601.	1.3	16
108	α-MoO3 nanowire-based amperometric biosensor for l-lactate detection. Journal of Solid State Electrochemistry, 2012, 16, 2197-2201.	1.2	16

#	Article	IF	CITATIONS
109	Enhancing the output power density of polydimethylsiloxane-based flexible triboelectric nanogenerators with ultrathin nickel telluride nanobelts as a co-triboelectric layer. Nano Energy, 2021, 90, 106536.	8.2	15
110	A Review of Metal–Organic Frameworkâ€Based Compounds for Environmental Applications. Energy and Environmental Materials, 2023, 6, .	7.3	15
111	Correlated transport and high resolution transmission electron microscopy investigations on inorganic-filled single-walled carbon nanotubes showing negative differential resistance. Applied Physics Letters, 2007, 91, 253124.	1.5	14
112	A Shape-Controlled Method to Functionalize Multiwalled Carbon Nanotubes with Ni3S2. Inorganic Chemistry, 2007, 46, 10307-10311.	1.9	14
113	Highly functional SnO2 coated PZT core–shell heterostructures as a visible light photocatalyst for efficient water remediation. Chemical Engineering Journal, 2013, 225, 650-655.	6.6	14
114	Ultralow-power non-volatile memory cells based on P(VDF-TrFE) ferroelectric-gate CMOS silicon nanowire channel field-effect transistors. Nanoscale, 2015, 7, 11660-11666.	2.8	14
115	Cu–Bi–Se-based pavonite homologue: a promising thermoelectric material with low lattice thermal conductivity. Journal of Materials Chemistry A, 2013, 1, 9768.	5.2	13
116	Lithium niobate nanoflakes as electrodes for highly stable electrochemical supercapacitor devices. Materials Letters, 2014, 119, 84-87.	1.3	13
117	Tunable threshold voltage of an n-type Si nanowire ferroelectric-gate field effect transistor for high-performance nonvolatile memory applications. Nanotechnology, 2014, 25, 205201.	1.3	13
118	Growth and Characterization of BiFeO3 Film for Novel Device Applications. Ferroelectrics, 2006, 333, 157-163.	0.3	12
119	Layer by layer assembly of gold nanoparticles and graphene via Langmuir Blodgett method for efficient light-harvesting in photocatalytic applications. Journal of Alloys and Compounds, 2014, 617, 707-712.	2.8	12
120	Unusual M ₂ -mediated metal-insulator transition in epitaxial VO ₂ thin films on GaN substrates. Europhysics Letters, 2015, 109, 27004.	0.7	12
121	Facile synthesis of single crystalline vanadium pentoxide nanowires and their photocatalytic behavior. Materials Letters, 2010, 64, 2458-2461.	1.3	11
122	Phase separation in polyfluorene blends investigated with complementary scanning probe microscopies. Materials Science and Technology, 2002, 18, 759-762.	0.8	10
123	Patterned carbon nanotube growth using an electron beam sensitive direct writable catalyst. Nanotechnology, 2009, 20, 315302.	1.3	10
124	An innovative scheme for sub-50 nm patterning via electrohydrodynamic lithography. Nanoscale, 2017, 9, 11881-11887.	2.8	10
125	Facile synthesis of copper sulfides on copper foam as an efficient electrocatalyst for oxygen evolution reaction. Materials Today Communications, 2020, 25, 101585.	0.9	10
126	Synthesis of binary metal phosphides heterostructures as a stable and efficient hydrogen evolution reaction electrocatalyst. Materials Today Communications, 2020, 25, 101257.	0.9	10

#	Article	IF	CITATIONS
127	Masked ion damage and implantation for device fabrication. Vacuum, 2002, 69, 11-15.	1.6	9
128	Ir/Ag reflector for high-performance GaN-based near UV light emitting diodes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 133, 26-29.	1.7	9
129	Biological functionality of active enzyme structures immobilized on various solid surfaces. Current Applied Physics, 2009, 9, 1454-1458.	1.1	9
130	Fabrication of a nano-scale pattern with various functional materials using electrohydrodynamic lithography and functionalization. RSC Advances, 2016, 6, 5944-5948.	1.7	9
131	Fog Collection Based on Secondary Electrohydrodynamic-Induced Hybrid Structures with Anisotropic Hydrophilicity. ACS Applied Materials & Interfaces, 2021, 13, 27575-27585.	4.0	9
132	High performance Si nanowire field-effect-transistors based on a CMOS inverter with tunable threshold voltage. Nanoscale, 2014, 6, 5479.	2.8	8
133	Single crystalline LiNb3O8 nanoflakes for efficient photocatalytic degradation of organic pollutants. RSC Advances, 2014, 4, 4917.	1.7	8
134	Enhanced photocatalytic activity of sea-urchin-like carbon/ZnO micro/nano heterostructures. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 356, 212-218.	2.0	8
135	Universal 2D material film transfer using a novel low molecular weight polyvinyl acetate. Applied Surface Science, 2020, 534, 147650.	3.1	7
136	Hierarchical porous spinel nickel cobaltite nanoflakes anchored reduced graphene oxide nano-photocatalyst for efficient degradation of organic pollutants under natural sunlight. Journal of Materials Research and Technology, 2021, 15, 623-632.	2.6	7
137	Ultrafast and low temperature laser annealing for crystalline TiO2 nanostructures patterned by electro-hydrodynamic lithography. Applied Physics Letters, 2013, 103, .	1.5	6
138	Ultralow power complementary inverter circuits using axially doped p- and n-channel Si nanowire field effect transistors. Nanoscale, 2016, 8, 12022-12028.	2.8	6
139	Facile synthesis of sheet-shaped Co2P grown on carbon cloth as a high-performance electrocatalyst for the hydrogen evolution reaction. Journal of Solid State Electrochemistry, 2018, 22, 3977-3983.	1.2	6
140	Improving Radio Frequency Transmission Properties of Graphene via Carrier Concentration Control toward High Frequency Transmission Line Applications. Advanced Functional Materials, 2019, 29, 1808057.	7.8	6
141	Nanofabricated SNS junction series arrays in superconductor-normal metal bilayers. Superconductor Science and Technology, 2001, 14, 1086-1089.	1.8	5
142	Ultrathin Conformal Coating and Zn Doping in Nanocrystalline Mesoporous TiO2 Micron-Sized Beads for Highly Efficient Dye Sensitized Solar Cells. Electrochimica Acta, 2015, 161, 329-334.	2.6	5
143	Enhanced critical current density of MgB2 thin films deposited at low temperatures by ZnO seed impurity. Current Applied Physics, 2018, 18, 762-766.	1.1	5
144	Geometrically Enhanced Graphene Tunneling Diode With Lateral Nano-Scale Gap. IEEE Electron Device Letters, 2019, 40, 1840-1843.	2.2	5

#	Article	IF	CITATIONS
145	Synthesis and Enhanced Photocatalytic Activity of Porous SrTiO3/TiO2 Composites. Journal of Nanoscience and Nanotechnology, 2019, 19, 5707-5712.	0.9	5
146	Asymmetry modulated SQUIDs made by direct focused ion beam milling. Physica C: Superconductivity and Its Applications, 2002, 368, 241-245.	0.6	4
147	High quality YBa/sub 2/Cu/sub 3/O/sub 7-Ĩ´Josephson junctions and junction arrays fabricated by masked proton beam irradiation damage. IEEE Transactions on Applied Superconductivity, 2003, 13, 889-892.	1.1	4
148	Controlled-junction superconducting quantum interference device via phonon injection. Applied Physics Letters, 2004, 84, 136-138.	1.5	4
149	Cu2(C3H2N3O3)2(C10H8N2): A Hydrogen-bonded Assemblies Supermolecule Containing 1D Channels and Novel Two-coordinated Linear N–Cu–N Configurations. Chemistry Letters, 2007, 36, 168-169.	0.7	4
150	Non-catalytic and template-free growth of single crystalline copper vanadate nanowires for field emission applications. Materials Chemistry and Physics, 2011, 131, 184-189.	2.0	4
151	Fabrication of an Inorganic Nano Structure for a Large Area via Electrohydrodynamic Lithography (EHL). Journal of Nanoscience and Nanotechnology, 2012, 12, 5307-5312.	0.9	4
152	Synthesis of TeO ₂ nanowires via a facile thermal oxidation method. Crystal Research and Technology, 2014, 49, 400-404.	0.6	4
153	Spontaneous polymerization of 2-ethynylpyridine with acylated multi-walled carbon nanotubes in supercritical carbon dioxide and their optical and electrochemical performance. Journal of Supercritical Fluids, 2014, 95, 431-436.	1.6	4
154	Parametric scheme for rapid nanopattern replication <i>via</i> electrohydrodynamic instability. RSC Advances, 2021, 11, 18152-18161.	1.7	4
155	Performance of high-Tc superconducting quantum interference devices with resistively shunted inductances. Applied Physics Letters, 1998, 73, 3929-3931.	1.5	3
156	Monte Carlo simulations of energetic proton beam irradiation damage defect productions in YBCO thin films with Au masks. Nuclear Instruments & Methods in Physics Research B, 2002, 188, 189-195.	0.6	3
157	MgB2junctions and SQUIDs fabricated by focused ion beam. Superconductor Science and Technology, 2003, 16, 254-259.	1.8	3
158	Josephson effects in MgB/sub 2/ metal masked ion damage junctions. IEEE Transactions on Applied Superconductivity, 2003, 13, 1071-1074.	1.1	3
159	Constructing LBL-assembled functional bio-architecture using gold nanorods for lactate detection. Materials Research Bulletin, 2012, 47, 3056-3060.	2.7	3
160	Growth of ultra-uniform graphene using a Ni/W bilayer metal catalyst. Applied Physics Letters, 2015, 106, .	1.5	3
161	Effects of insulating vanadium oxide composite in concomitant mixed phases via interface barrier modulations on the performance improvements in metal-insulator-metal diodes. AIP Advances, 2018, 8, .	0.6	3
162	Strain-dependent phase-change devices based on vanadium dioxide thin films on flexible glass substrates. Applied Physics Letters, 2022, 120, .	1.5	3

#	Article	IF	CITATIONS
163	Improvement of high T/sub c/ SQUID performance using an integrated resistor. IEEE Transactions on Applied Superconductivity, 1999, 9, 4432-4435.	1.1	2
164	Fabrication of HTS Josephson junctions on substrates prepared by focused ion beam system. IEEE Transactions on Applied Superconductivity, 1999, 9, 2894-2897.	1.1	2
165	Hot phonon controlled-junction superconducting quantum interference device. Superconductor Science and Technology, 2003, 16, 1544-1549.	1.8	2
166	Creating functional nanostructured materials at the crossroad of physics, chemistry and materials science. International Journal of Nanotechnology, 2005, 2, 440.	0.1	2
167	Novel Patterning of Gold Using Spin-Coatable Gold Electron-Beam Resist. ETRI Journal, 2007, 29, 814-816.	1.2	2
168	A template-free and green route to synthesize macroporous silver monoliths and their catalytic properties. Materials Letters, 2008, 62, 3185-3188.	1.3	2
169	Highly Efficient Photocatalysts Based on Lamellar-Shaped Bi ₂ S ₃ Grown on TiO ₂ Monolith. Nano, 2018, 13, 1850110.	0.5	2
170	Enhanced AC conductivity and dielectric properties of ultrathin β-silver vanadium oxide/aniline nanowires. Materials Letters, 2021, 290, 123714.	1.3	2
171	Fabrication of Layer-By-Layer-Assembled Bio-Architecture on Gold Nanorods. Journal of the Korean Physical Society, 2008, 53, 886-891.	0.3	2
172	Functional CuO Nanowire Bundle Growth on ITO from a Novel Spin Coatable Seed Layer and Electrochemical Route. Journal of the Korean Physical Society, 2010, 56, 1504-1508.	0.3	2
173	Novel Josephson junction geometries in NbCu bilayers fabricated by focused ion beam microscope. Physica C: Superconductivity and Its Applications, 2002, 367, 267-271.	0.6	1
174	Focused ion beam fabrication and properties of nanoscale Josephson junctions for sensors and other applications. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 1455-1462.	0.8	1
175	Field emission study of strain controlled ZnO nanowire arrays via a hydrothermal technique. , 2012, , .		1
176	Investigation of thioglycerol stabilized ZnS quantum dots in electroluminescent device performance. AIP Conference Proceedings, 2016, , .	0.3	1
177	Growth of 2-Inch Wafer-Scale Uniform Vanadium Dioxide Thin Films Using Radio-Frequency Sputtering System and Characteristics of Their Metal-Insulator Transition. Science of Advanced Materials, 2018, 10, 1171-1178.	0.1	1
178	Cu2S Nanoflakes Decorated with NiS Nanoneedles for Enhanced Oxygen Evolution Activity. Micromachines, 2022, 13, 278.	1.4	1
179	Effects of residual stresses on the critical current in externally coated superconducting Bi-2212 tapes. IEEE Transactions on Magnetics, 1996, 32, 2970-2973.	1.2	0
180	Magnesium diboride superconducting quantum interference devices fabricated by focused ion beam. IEEE Transactions on Applied Superconductivity, 2003, 13, 869-872.	1.1	0

#	Article	IF	CITATIONS
181	Nanowires: Fabrication of Sub-10 nm Metallic Lines of Low Line-Width Roughness by Hydrogen Reduction of Patterned Metal-Organic Materials (Adv. Funct. Mater. 14/2010). Advanced Functional Materials, 2010, 20, n/a-n/a.	7.8	0
182	Parameter Optimization for Positive Dielectrophoretic Trapping Force on ZnO Nanoparticles Through Simulation. Journal of Nanoscience and Nanotechnology, 2012, 12, 1152-1156.	0.9	0
183	Realization of high performance ferroelectric-gate FET nonvolatile memory using p-type Si nanowire channel. , 2012, , .		0
184	Field emission study of Te nanowire arrays grown on conducting silicon substrate. , 2012, , .		0
185	Characterization of field emission properties of β-Na <inf>0.33</inf> V <inf>2</inf> O <inf>5</inf> single crystalline nanowires. , 2012, , .		0
186	A new achievement "Increased Impact Factor of Current Nanoscience― Current Nanoscience, 2019, 15, 548-548.	0.7	0
187	Radio Frequency Transmission: Improving Radio Frequency Transmission Properties of Graphene via Carrier Concentration Control toward High Frequency Transmission Line Applications (Adv. Funct.) Tj ETQq1 1 0.	78 48 14 r	gBƊ/Overlo⊂
188	Review on the Recent Advances in Composite Based Highoutput Piezo-Triboelectric Energy Harvesters. Ceramist, 2020, 23, 54-88.	0.0	0