Xuejie Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4325120/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cr ³⁺ -Sphere Effect on the Whitlockite-Type NIR Phosphor Sr ₉ Sc(PO ₄) ₇ with High Heat Dissipation for Digital Medical Applications. Inorganic Chemistry, 2022, 61, 2530-2537.	4.0	17
2	Engineering the crystallization behavior of CsPbBr3 quantum dots in borosilicate glass through modulating the glass network modifiers for wide-color-gamut displays. Journal of the European Ceramic Society, 2022, 42, 3586-3594.	5.7	11
3	Modulating the local structure of glass to promote <i>in situ</i> precipitation of perovskite CsPbBr ₃ quantum dots by introducing a network modifier. Journal of Materials Chemistry C, 2022, 10, 8634-8641.	5.5	7
4	A rapid construction strategy of NaYF ₄ :Yb,Er@CDs nanocomposites for dual-mode anti-counterfeiting. Materials Advances, 2022, 3, 4542-4547.	5.4	6
5	内嵌碳ç,¹çš"æ—é"…é‡'å±žåøŒ–ç‰©å•æ™¶ç"¨äºŽå•组å^†ç™½å…‰å'射体. Science China Materials,	2 02 2, 65,	2 8 02-280 ⁸ .
6	The role of fluorescent carbon dots in crops: Mechanism and applications. SmartMat, 2022, 3, 208-225.	10.7	21
7	Carbon Dots in Hydroxy Fluorides: Achieving Multicolor Long-Wavelength Room-Temperature Phosphorescence and Excellent Stability via Crystal Confinement. Nano Letters, 2022, 22, 5127-5136.	9.1	46
8	In Situ Growth of High-Quality CsPbBr ₃ Quantum Dots with Unusual Morphology inside a Transparent Glass with a Heterogeneous Crystallization Environment for Wide Gamut Displays. ACS Applied Materials & Interfaces, 2022, 14, 30029-30038.	8.0	17
9	Ultraâ€Wide Vis–NIR Mg ₂ Al ₄ Si ₅ O ₁₈ :Eu ²⁺ ,Cr ³⁺ Phosphor Containing Unusual NIR Luminescence Induced by Cr ³⁺ Occupying Tetrahedral Coordination for Hyperspectral Imaging, Advanced Optical Materials, 2022, 10.	7.3	24
10	Synthesis of Carbon Dots with Carbogenic π-Conjugated Domains for Full-Band UV Shielding. ACS Applied Nano Materials, 2022, 5, 9140-9149.	5.0	10
11	Carbon dots as light converter for plant photosynthesis: Augmenting light coverage and quantum yield effect. Journal of Hazardous Materials, 2021, 410, 124534.	12.4	69
12	Red, orange, yellow and green luminescence by carbon dots: hydrogen-bond-induced solvation effects. Nanoscale, 2021, 13, 6846-6855.	5.6	49
13	Multiemissive Room-Temperature Phosphorescent Carbon Dots@ZnAl ₂ O ₄ Composites by Inorganic Defect Triplet-State Energy Transfer. ACS Applied Materials & Interfaces, 2021, 13, 34705-34713.	8.0	34
14	Uptake, translocation and toxicity of fluorescent carbon dots in oyster mushroom (Pleurotus) Tj ETQqO O O rgBT	Oyerlock 3.1	19 Tf 50 222
15	TiO ₂ /Chlorophyll S-Scheme Composite Photocatalyst with Improved Photocatalytic Bactericidal Performance. ACS Applied Materials & Interfaces, 2021, 13, 39446-39457.	8.0	36
16	Antibacterial Activity and Synergetic Mechanism of Carbon Dots against Gram-Positive and -Negative Bacteria. ACS Applied Bio Materials, 2021, 4, 6937-6945.	4.6	51
17	Nearâ€Infraredâ€Excited Multicolor Afterglow in Carbon Dotsâ€Based Roomâ€Temperature Afterglow Materials. Angewandte Chemie, 2021, 133, 22427-22433.	2.0	8

18Nearâ€Infraredâ€Excited Multicolor Afterglow in Carbon Dotsâ€Based Roomâ€Temperature Afterglow
Materials. Angewandte Chemie - International Edition, 2021, 60, 22253-22259.13.873

#	Article	IF	CITATIONS
19	Magnesium-nitrogen co-doped carbon dots enhance plant growth through multifunctional regulation in photosynthesis. Chemical Engineering Journal, 2021, 422, 130114.	12.7	54
20	Oxidation-induced quenching mechanism of ultrabright red carbon dots and application in antioxidant RCDs/PVA film. Chemical Engineering Journal, 2021, 425, 131653.	12.7	36
21	Hemicellulose-triggered high-yield synthesis of carbon dots from biomass. New Journal of Chemistry, 2021, 45, 5484-5490.	2.8	13
22	Construction of Carbon Dots with Colorâ€Tunable Aggregationâ€Induced Emission by Nitrogenâ€Induced Intramolecular Charge Transfer. Advanced Materials, 2021, 33, e2104872.	21.0	112
23	Facile synthesis of the desired red phosphor Li ₂ Ca ₂ Mg ₂ Si ₂ N ₆ :Eu ²⁺ for high CRI white LEDs and plant growth LED device. Journal of the American Ceramic Society, 2020, 103, 1773-1781.	3.8	33
24	A review on the effects of carbon dots in plant systems. Materials Chemistry Frontiers, 2020, 4, 437-448.	5.9	139
25	Enhancement of Fluorescence Emission for Tricolor Quantum Dots Assembled in Polysiloxane toward Solar Spectrumâ€ S imulated White Lightâ€Emitting Devices. Small, 2020, 16, e1905266.	10.0	16
26	Surface functional carbon dots: chemical engineering applications beyond optical properties. Journal of Materials Chemistry C, 2020, 8, 16282-16294.	5.5	36
27	pH-Responsive carbon dots with red emission for real-time and visual detection of amines. Journal of Materials Chemistry C, 2020, 8, 11563-11571.	5.5	72
28	Regulating the morphology and luminescence properties of CsPbBr ₃ perovskite quantum dots through the rigidity of glass network structure. Journal of Materials Chemistry C, 2020, 8, 17374-17382.	5.5	41
29	Self-formed C-dot-based 2D polysiloxane with high photoluminescence quantum yield and stability. Nanoscale, 2020, 12, 10771-10780.	5.6	6
30	Facile fabrication of a CD/PVA composite polymer to access light-responsive shape-memory effects. Journal of Materials Chemistry C, 2020, 8, 8935-8941.	5.5	22
31	Promoting the Growth of Mung Bean Plants through Uptake and Light Conversion of NaYF ₄ :Yb,Er@CDs Nanocomposites. ACS Sustainable Chemistry and Engineering, 2020, 8, 9751-9762.	6.7	40
32	F enhanced luminescence performance of SrLu2O4:Ce3+ glass ceramic for superior high-power artificial horticultural LEDs. Ceramics International, 2020, 46, 21560-21568.	4.8	19
33	Temperature-responsive conversion of thermally activated delayed fluorescence and room-temperature phosphorescence of carbon dots in silica. Journal of Materials Chemistry C, 2020, 8, 5744-5751.	5.5	86
34	Carbon Dots as a Protective Agent Alleviating Abiotic Stress on Rice (<i>Oryza sativa</i> L.) through Promoting Nutrition Assimilation and the Defense System. ACS Applied Materials & Interfaces, 2020, 12, 33575-33585.	8.0	56
35	Glass-ceramics with thermally stable blue-red emission for high-power horticultural LED applications. Journal of Materials Chemistry C, 2020, 8, 3996-4002.	5.5	19
36	PVA-Coated Fluorescent Carbon Dot Nanocapsules as an Optical Amplifier for Enhanced Photosynthesis of Lettuce. ACS Sustainable Chemistry and Engineering, 2020, 8, 3938-3949.	6.7	41

#	Article	IF	CITATIONS
37	Far-Red Carbon Dots as Efficient Light-Harvesting Agents for Enhanced Photosynthesis. ACS Applied Materials & Interfaces, 2020, 12, 21009-21019.	8.0	102
38	Selfâ€Quenchingâ€Resistant Red Emissive Carbon Dots with High Stability for Warm White Lightâ€Emitting Diodes with a High Color Rendering Index. Advanced Optical Materials, 2020, 8, 2000251.	7.3	56
39	Room temperature phosphorescence from Si-doped-CD-based composite materials with long lifetimes and high stability. Optics Express, 2020, 28, 19550.	3.4	9
40	Synthesis of dual-emissive carbon dots with a unique solvatochromism phenomenon. Journal of Colloid and Interface Science, 2019, 555, 607-614.	9.4	66
41	Precipitating CsPbBr ₃ quantum dots in boro-germanate glass with a dense structure and inert environment toward highly stable and efficient narrow-band green emitters for wide-color-gamut liquid crystal displays. Journal of Materials Chemistry C, 2019, 7, 13139-13148.	5.5	68
42	Precipitating tunable-emission CsPb(Cl/Br) ₃ QDs in boro-germanate glass for wide-color-gamut liquid crystal displays. Journal of Information Display, 2019, 20, 193-200.	4.0	10
43	Improving the luminous efficacy and resistance to blue laser irradiation of phosphor-in-glass based solid state laser lighting through employing dual-functional sapphire plate. Journal of Materials Chemistry C, 2019, 7, 354-361.	5.5	70
44	Synthesis of Silicon Quantum Dots with Highly Efficient Full-Band UV Absorption and Their Applications in Antiyellowing and Resistance of Photodegradation. ACS Applied Materials & Interfaces, 2019, 11, 6634-6643.	8.0	45
45	Construction of NaYF ₄ :Yb,Er(Tm)@CDs composites for enhancing red and NIR upconversion emission. Journal of Materials Chemistry C, 2019, 7, 6231-6235.	5.5	32
46	Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission. Nature Communications, 2019, 10, 1789.	12.8	419
47	Solid-state silicon nanoparticles with color-tunable photoluminescence and multifunctional applications. Journal of Materials Chemistry C, 2019, 7, 5962-5969.	5.5	15
48	A Universal Strategy for Activating the Multicolor Roomâ€Temperature Afterglow of Carbon Dots in a Boric Acid Matrix. Angewandte Chemie, 2019, 131, 7356-7361.	2.0	62
49	A Universal Strategy for Activating the Multicolor Roomâ€∓emperature Afterglow of Carbon Dots in a Boric Acid Matrix. Angewandte Chemie - International Edition, 2019, 58, 7278-7283.	13.8	266
50	Improving moisture stability of SrLiAl3N4:Eu2+ through phosphor-in-glass approach to realize its application in plant growing LED device. Journal of Colloid and Interface Science, 2019, 545, 195-199.	9.4	24
51	Construction of NaYF4:Eu@carbon dots nanocomposites for multifunctional applications. Journal of Colloid and Interface Science, 2019, 543, 156-163.	9.4	12
52	Highly efficient and dual broad emitting light convertor: an option for next-generation plant growth LEDs. Journal of Materials Chemistry C, 2019, 7, 3617-3622.	5.5	35
53	Carbon Dot-Silica Nanoparticle Composites for Ultralong Lifetime Phosphorescence Imaging in Tissue and Cells at Room Temperature. Chemistry of Materials, 2019, 31, 9887-9894.	6.7	137
54	Assembly of shell/core CDs@CaF ₂ nanocomposites to endow polymers with multifunctional properties. Nanotechnology, 2019, 30, 155601.	2.6	7

#	Article	IF	CITATIONS
55	Synthesis of modified carbon dots with performance of ultraviolet absorption used in sunscreen. Optics Express, 2019, 27, 7629.	3.4	27
56	Phase-controlled synthesis of molybdenum oxide nanoparticles for surface enhanced Raman scattering and photothermal therapy. Nanoscale, 2018, 10, 5997-6004.	5.6	85
57	Enhanced luminescence performance of CaO:Ce ³⁺ ,Li ⁺ ,F ^{â^`} phosphor and its phosphor-in-glass based high-power warm LED properties. Journal of Materials Chemistry C, 2018, 6, 4077-4086.	5.5	24
58	Construction and multifunctional applications of carbon dots/PVA nanofibers with phosphorescence and thermally activated delayed fluorescence. Chemical Engineering Journal, 2018, 347, 505-513.	12.7	84
59	Largeâ€Scale Oneâ€Step Synthesis of Carbon Dots from Yeast Extract Powder and Construction of Carbon Dots/PVA Fluorescent Shape Memory Material. Advanced Optical Materials, 2018, 6, 1701150.	7.3	76
60	Ultrastable red-emitting phosphor-in-glass for superior high-power artificial plant growth LEDs. Journal of Materials Chemistry C, 2018, 6, 1738-1745.	5.5	95
61	Tunable emission from green to red in the GdSr ₂ AlO ₅ :Tb ³⁺ ,Eu ³⁺ phosphor <i>via</i> efficient energy transfer. RSC Advances, 2018, 8, 3530-3535.	3.6	38
62	Energy transfer and tunable emission of Ca14Al10Zn6O35:Bi3+,Sm3+ phosphor. Materials Research Bulletin, 2018, 100, 56-61.	5.2	28
63	Co-precipitation synthesis and photoluminescence properties of BaTiF ₆ :Mn ⁴⁺ : an efficient red phosphor for warm white LEDs. Journal of Materials Chemistry C, 2018, 6, 127-133.	5.5	60
64	Enhanced Biological Photosynthetic Efficiency Using Lightâ€Harvesting Engineering with Dualâ€Emissive Carbon Dots. Advanced Functional Materials, 2018, 28, 1804004.	14.9	189
65	Cr3+ doped ZnGa2O4 far-red emission phosphor-in-glass: Toward high-power and color-stable plant growth LEDs with responds to all of phytochrome. Materials Research Bulletin, 2018, 108, 226-233.	5.2	47
66	Preparation and properties of dual-mode luminescent NaYF ₄ :Yb,Tm@SiO ₂ /carbon dot nanocomposites. Journal of Materials Chemistry C, 2018, 6, 10360-10366.	5.5	26
67	Near-Ultraviolet to Near-Infrared Fluorescent Nitrogen-Doped Carbon Dots with Two-Photon and Piezochromic Luminescence. ACS Applied Materials & Interfaces, 2018, 10, 27920-27927.	8.0	63
68	High-power laser-driven phosphor-in-glass for excellently high conversion efficiency white light generation for special illumination or display backlighting. Journal of Materials Chemistry C, 2018, 6, 8212-8218.	5.5	81
69	Silica shell-assisted synthetic route for mono-disperse persistent nanophosphors with enhanced in vivo recharged near-infrared persistent luminescence. Nano Research, 2017, 10, 2070-2082.	10.4	103
70	Thermally Stable White Emitting Eu ³⁺ Complex@Nanozeolite@Luminescent Glass Composite with High CRI for Organic-Resin-Free Warm White LEDs. ACS Applied Materials & Interfaces, 2017, 9, 7272-7281.	8.0	42
71	Facile synthesis, morphology and photoluminescence of a novel red fluoride nanophosphor K2NaAlF6:Mn4+. Journal of Materials Chemistry C, 2017, 5, 6420-6426.	5.5	104
72	Concentration-Driven Selectivity of Energy Transfer Channels and Color Tunability in Ba ₃ La(PO ₄) ₃ :Tb ³⁺ , Sm ³⁺ for Warm White LEDs. Inorganic Chemistry, 2017, 56, 7433-7442.	4.0	65

#	Article	IF	CITATIONS
73	All-Inorganic Light Convertor Based on Phosphor-in-Glass Engineering for Next-Generation Modular High-Brightness White LEDs/LDs. ACS Photonics, 2017, 4, 986-995.	6.6	223
74	Controlling of Structural Ordering and Rigidity of β-SiAlON:Eu through Chemical Cosubstitution to Approach Narrow-Band-Emission for Light-Emitting Diodes Application. Chemistry of Materials, 2017, 29, 6781-6792.	6.7	57
75	Pollen derived blue fluorescent carbon dots for bioimaging and monitoring of nitrogen, phosphorus and potassium uptake in Brassica parachinensisÂL RSC Advances, 2017, 7, 33459-33465.	3.6	39
76	Bioimaging Application and Growth-Promoting Behavior of Carbon Dots from Pollen on Hydroponically Cultivated Rome Lettuce. ACS Omega, 2017, 2, 3958-3965.	3.5	73
77	Enhanced persistent properties of Mn ²⁺ activated CaZnOS. RSC Advances, 2017, 7, 38498-38505.	3.6	6
78	Double substitution induced tunable luminescent properties of Ca3â"xYxSc2â"xMgxSi3O12:Ce3+phosphors for white LEDs. Journal of Materials Chemistry C, 2016, 4, 5671-5678.	5.5	32
79	Facile Atmospheric Pressure Synthesis of High Thermal Stability and Narrow-Band Red-Emitting SrLiAl ₃ N ₄ :Eu ²⁺ Phosphor for High Color Rendering Index White Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2016, 8, 19612-19617.	8.0	120
80	Robust and Stable Narrow-Band Green Emitter: An Option for Advanced Wide-Color-Gamut Backlight Display. Chemistry of Materials, 2016, 28, 8493-8497.	6.7	164
81	Enhance Color Rendering Index via Full Spectrum Employing the Important Key of Cyan Phosphor. ACS Applied Materials & Interfaces, 2016, 8, 30677-30682.	8.0	85
82	Blue-emitting phosphor Ba ₄ OCl ₆ :Eu ²⁺ with good thermal stability and a tiny chromaticity shift for white LEDs. Journal of Materials Chemistry C, 2016, 4, 2367-2373.	5.5	66
83	Spectroscopy and Luminescence Dynamics of Ce ³⁺ and Sm ³⁺ in LiYSiO ₄ . Journal of Physical Chemistry C, 2016, 120, 4529-4537.	3.1	75
84	HF-Free Hydrothermal Route for Synthesis of Highly Efficient Narrow-Band Red Emitting Phosphor K ₂ Si _{1–<i>x</i>} F ₆ : <i>x</i> Mn ⁴⁺ for Warm White Light-Emitting Diodes. Chemistry of Materials, 2016, 28, 1495-1502.	6.7	365
85	Facile Preparation and Ultrastable Performance of Single-Component White-Light-Emitting Phosphor-in-Glass used for High-Power Warm White LEDs. ACS Applied Materials & Interfaces, 2015, 7, 28122-28127.	8.0	112
86	Tunable Luminescent Properties and Concentration-Dependent, Site-Preferable Distribution of Eu ²⁺ lons in Silicate Glass for White LEDs Applications. ACS Applied Materials & Interfaces, 2015, 7, 10044-10054.	8.0	197
87	Synthesis and photoluminescence properties of a cyan-emitting phosphor Ca3(PO4)2:Eu2+ for white light-emitting diodes. Optical Materials, 2015, 39, 173-177.	3.6	51
88	Highly Thermally Stable Single-Component White-Emitting Silicate Glass for Organic-Resin-Free White-Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2014, 6, 2709-2717.	8.0	220
89	A Stable and Efficient Redâ€Emitting Color Converter Based on K 2 SiF 6 :Mn 4+ Phosphorâ€inâ€Glass Film for Nextâ€Generation Laserâ€Excited Lighting and Display. Advanced Photonics Research, 0, , 2100146.	3.6	9