Giuseppe Firpo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4324600/publications.pdf

Version: 2024-02-01

623734 642732 30 557 14 23 citations g-index h-index papers 31 31 31 840 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	High blood flow shear stress values are associated with circulating tumor cells cluster disaggregation in a multi-channel microfluidic device. PLoS ONE, 2021, 16, e0245536.	2.5	31
2	High-vacuum setup for permeability and diffusivity measurements by membrane techniques. Vacuum, 2021, 191, 110368.	3.5	9
3	Electrical biosensing with synthetic nanopores and nanochannels. Current Opinion in Electrochemistry, 2021, 29, 100754.	4.8	4
4	Plasma Sputtered Tungsten Oxide Thin Film on Poly(lactic acid) for Food Packaging Applications. Coatings, 2021, 11, 1281.	2.6	6
5	Junction gap breakdown-based fabrication of polydimethylsiloxane ionic rectifiers. Journal of Micromechanics and Microengineering, 2020, 30, 025004.	2.6	3
6	Nanofluidic-Based Accumulation of Antigens for Miniaturized Immunoassay. Sensors, 2020, 20, 1615.	3.8	7
7	Ion Current Rectification in Extra-Long Nanofunnels. Applied Sciences (Switzerland), 2020, 10, 3749.	2.5	2
8	Integrating Microstructured Electrospun Scaffolds in an Open Microfluidic System for in Vitro Studies of Human Patient-Derived Primary Cells. ACS Biomaterials Science and Engineering, 2020, 6, 3649-3663.	5.2	8
9	In vitro demonstration of intestinal absorption mechanisms of different sugars using 3D organotypic tissues in a fluidic device. ALTEX: Alternatives To Animal Experimentation, 2020, 37, 255-264.	1.5	18
10	The Role of Surfaces in Gas Transport Through Polymer Membranes. Polymers, 2019, 11, 910.	4.5	7
11	Increased Flexibility in Lab-on-Chip Design with a Polymer Patchwork Approach. Nanomaterials, 2019, 9, 1678.	4.1	7
12	Gas permeation through rubbery polymer nano-corrugated membranes. Scientific Reports, 2018, 8, 6345.	3.3	19
13	Simultaneous Electro-Optical Tracking for Nanoparticle Recognition and Counting. Nano Letters, 2015, 15, 5696-5701.	9.1	28
14	Selective protein detection with a dsLNA-functionalized nanopore. Biosensors and Bioelectronics, 2015, 64, 219-226.	10.1	14
15	Stretching of DNA confined in nanochannels with charged walls. Biomicrofluidics, 2014, 8, 064121.	2.4	21
16	Nano-holes as standard leak elements. Measurement: Journal of the International Measurement Confederation, 2014, 58, 335-341.	5.0	26
17	Role of substrate morphology in ion induced dewetting of thin solid films. Applied Surface Science, 2014, 315, 432-439.	6.1	8
18	Conformations of DNA in Triangular Nanochannels. Macromolecules, 2013, 46, 4198-4206.	4.8	24

#	Article	IF	CITATIONS
19	Mechanical squeezing of an elastomeric nanochannel device: numerical simulations and ionic current characterization. Microfluidics and Nanofluidics, 2013, 14, 21-30.	2.2	11
20	Ion induced spinodal dewetting of thin solid films. Applied Physics Letters, 2012, 100, 223113.	3.3	23
21	Order versus Disorder: in vivo bone formation within osteoconductive scaffolds. Scientific Reports, 2012, 2, 274.	3.3	67
22	Size and functional tuning of solid state nanopores by chemical functionalization. Nanotechnology, 2012, 23, 435301.	2.6	15
23	Modulating DNA Translocation by a Controlled Deformation of a PDMS Nanochannel Device. Scientific Reports, 2012, 2, 791.	3.3	38
24	DNA manipulation with elastomeric nanostructures fabricated by soft-moulding of a FIB-patterned stamp. Lab on A Chip, 2011, 11, 2625.	6.0	33
25	DNA detection with a polymeric nanochannel device. Lab on A Chip, 2011, 11, 2961.	6.0	48
26	"DNA-Dressed NAnopore―for complementary sequence detection. Biosensors and Bioelectronics, 2011, 29, 125-131.	10.1	41
27	Fabrication of Elastomeric Nanofluidic Devices for Manipulation of Long DNA Molecules. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2009, , 134-140.	0.3	1
28	Fast three-dimensional nanoscale metrology in dual-beam FIB–SEM instrumentation. Ultramicroscopy, 2009, 109, 1338-1342.	1.9	6
29	Nanotechnology Applications in Medicine. Tumori, 2008, 94, 206-215.	1.1	27
30	Nanostructuring polymers by soft lithography templates realized via ion sputtering. Nanotechnology, 2005, 16, 2714-2717.	2.6	5