
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4324490/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prostate luminal progenitor cells: from mouse to human, from health to disease. Nature Reviews Urology, 2022, 19, 201-218.	1.9	12
2	Deciphering functional tumor states at single ell resolution. EMBO Journal, 2022, 41, e109221.	3.5	23
3	Mesp1 controls the chromatin and enhancer landscapes essential for spatiotemporal patterning of early cardiovascular progenitors. Nature Cell Biology, 2022, 24, 1114-1128.	4.6	11
4	Fat1 deletion promotes hybrid EMT state, tumour stemness and metastasis. Nature, 2021, 589, 448-455.	13.7	232
5	NR2F2 controls malignant squamous cell carcinoma state by promoting stemness and invasion and repressing differentiation. Nature Cancer, 2021, 2, 1152-1169.	5.7	17
6	Epidermal autonomous VEGFA/Flt1/Nrp1 functions mediate psoriasis-like disease. Science Advances, 2020, 6, eaax5849.	4.7	37
7	Mechanisms of stretch-mediated skin expansion at single-cell resolution. Nature, 2020, 584, 268-273.	13.7	113
8	Heterotypic cell–cell communication regulates glandular stem cell multipotency. Nature, 2020, 584, 608-613.	13.7	82
9	Recording EMT Activity by Lineage Tracing during Metastasis. Developmental Cell, 2020, 54, 567-569.	3.1	10
10	A Novel Approach for Quantifying Cancer Cells Showing Hybrid Epithelial/Mesenchymal States in Large Series of Tissue Samples: Towards a New Prognostic Marker. Cancers, 2020, 12, 906.	1.7	35
11	Defining the Design Principles of Skin Epidermis Postnatal Growth. Cell, 2020, 181, 604-620.e22.	13.5	65
12	Guidelines and definitions for research on epithelial–mesenchymal transition. Nature Reviews Molecular Cell Biology, 2020, 21, 341-352.	16.1	1,195
13	Targeting the epigenetic addiction of Merkel cell carcinoma. EMBO Molecular Medicine, 2020, 12, e13347.	3.3	4
14	Spatiotemporal regulation of multipotency during prostate development. Development (Cambridge), 2019, 146, .	1.2	19
15	Context Dependency of Epithelial-to-Mesenchymal Transition for Metastasis. Cell Reports, 2019, 29, 1458-1468.e3.	2.9	28
16	EGFR Controls Hair Shaft Differentiation in a p53-Independent Manner. IScience, 2019, 15, 243-256.	1.9	14
17	Thyroid hormone induces progression and invasiveness of squamous cell carcinomas by promoting a ZEB-1/E-cadherin switch. Nature Communications, 2019, 10, 5410.	5.8	41
18	EMT Transition States during Tumor Progression and Metastasis. Trends in Cell Biology, 2019, 29, 212-226.	3.6	1,764

#	Article	IF	CITATIONS
19	Stem cell dynamics, migration and plasticity during wound healing. Nature Cell Biology, 2019, 21, 18-24.	4.6	250
20	Phenotypic Plasticity: Driver of Cancer Initiation, Progression, and Therapy Resistance. Cell Stem Cell, 2019, 24, 65-78.	5.2	399
21	Universality of clone dynamics during tissue development. Nature Physics, 2018, 14, 469-474.	6.5	37
22	Identification of the tumour transition states occurring during EMT. Nature, 2018, 556, 463-468.	13.7	1,083
23	Defining the earliest step of cardiovascular lineage segregation by single-cell RNA-seq. Science, 2018, 359, 1177-1181.	6.0	230
24	A slow-cycling LGR5 tumour population mediates basal cell carcinoma relapse after therapy. Nature, 2018, 562, 434-438.	13.7	113
25	Early lineage segregation of multipotent embryonic mammary gland progenitors. Nature Cell Biology, 2018, 20, 666-676.	4.6	124
26	Deciphering the cells of origin of squamous cell carcinomas. Nature Reviews Cancer, 2018, 18, 549-561.	12.8	171
27	<scp>YAP</scp> and <scp>TAZ</scp> are essential for basal and squamous cell carcinoma initiation. EMBO Reports, 2018, 19, .	2.0	76
28	Defining stem cell dynamics and migration during wound healing in mouse skin epidermis. Nature Communications, 2017, 8, 14684.	5.8	273
29	Identifying the niche controlling melanocyte differentiation. Genes and Development, 2017, 31, 721-723.	2.7	7
30	Maintaining hair follicle stem cell identity in a dish. EMBO Journal, 2017, 36, 132-134.	3.5	6
31	Lineage-Restricted Mammary Stem Cells Sustain the Development, Homeostasis, and Regeneration of the Estrogen Receptor Positive Lineage. Cell Reports, 2017, 20, 1525-1532.	2.9	83
32	Transgenic stem cells replace skin. Nature, 2017, 551, 306-307.	13.7	14
33	Cell-Type-Specific Chromatin States Differentially Prime Squamous Cell Carcinoma Tumor-Initiating Cells for Epithelial to Mesenchymal Transition. Cell Stem Cell, 2017, 20, 191-204.e5.	5.2	170
34	p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity. Nature Medicine, 2016, 22, 861-868.	15.2	372
35	Defining the clonal dynamics leading to mouse skin tumour initiation. Nature, 2016, 536, 298-303.	13.7	104
36	Editorial Overview: The ins and outs of stem cells in differentiation, inflammation & disease. Current Opinion in Cell Biology, 2016, 43, iv-vi.	2.6	0

#	Article	IF	CITATIONS
37	Cancer Stem Cells: Basic Concepts and Therapeutic Implications. Annual Review of Pathology: Mechanisms of Disease, 2016, 11, 47-76.	9.6	559
38	Mesp1 controls the speed, polarity, and directionality of cardiovascular progenitor migration. Journal of Cell Biology, 2016, 213, 463-477.	2.3	46
39	Uncovering the Number and Clonal Dynamics of Mesp1 Progenitors during Heart Morphogenesis. Cell Reports, 2016, 14, 1-10.	2.9	91
40	Quantitative lineage tracing strategies to resolve multipotency in tissue-specific stem cells. Genes and Development, 2016, 30, 1261-1277.	2.7	131
41	Tracking the origins of tumorigenesis. Science, 2016, 351, 453-454.	6.0	4
42	Transient PLK4 overexpression accelerates tumorigenesis in p53-deficient epidermis. Nature Cell Biology, 2016, 18, 100-110.	4.6	145
43	Deregulated expression of Cdc6 in the skin facilitates papilloma formation and affects the hair growth cycle. Cell Cycle, 2015, 14, 3897-3907.	1.3	12
44	Different Levels of Twist1 Regulate Skin Tumor Initiation, Stemness, and Progression. Cell Stem Cell, 2015, 16, 67-79.	5.2	169
45	Clonal Dynamics Reveal Two Distinct Populations of Basal Cells in Slow-Turnover Airway Epithelium. Cell Reports, 2015, 12, 90-101.	2.9	154
46	Toward understanding and exploiting tumor heterogeneity. Nature Medicine, 2015, 21, 846-853.	15.2	604
47	Sox9 Controls Self-Renewal of Oncogene Targeted Cells and Links Tumor Initiation and Invasion. Cell Stem Cell, 2015, 17, 60-73.	5.2	126
48	Genomic landscape of carcinogen-induced and genetically induced mouse skin squamous cell carcinoma. Nature Medicine, 2015, 21, 946-954.	15.2	179
49	Single stem cell gene therapy for geneticÂskin disease. EMBO Molecular Medicine, 2015, 7, 366-367.	3.3	5
50	Reactivation of multipotency by oncogenic PIK3CA induces breast tumour heterogeneity. Nature, 2015, 525, 119-123.	13.7	284
51	The long noncoding RNA Neat1 is required for mammary gland development and lactation. Rna, 2014, 20, 1844-1849.	1.6	177
52	Cardiac Cell Lineages that Form the Heart. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a013888-a013888.	2.9	70
53	Early lineage restriction in temporally distinct populations of Mesp1 progenitors during mammalian heart development. Nature Cell Biology, 2014, 16, 829-840.	4.6	255
54	SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma. Nature, 2014, 511, 246-250.	13.7	552

#	Article	IF	CITATIONS
55	Plasticity of epithelial stem cells in tissue regeneration. Science, 2014, 344, 1242281.	6.0	464
56	Unravelling stem cell dynamics by lineage tracing. Nature Reviews Molecular Cell Biology, 2013, 14, 489-502.	16.1	231
57	aPKCλ controls epidermal homeostasis and stem cell fate through regulation of division orientation. Journal of Cell Biology, 2013, 202, 887-900.	2.3	86
58	Unravelling cancer stem cell potential. Nature Reviews Cancer, 2013, 13, 727-738.	12.8	723
59	BRCA1 deficiency in skin epidermis leads to selective loss of hair follicle stem cells and their progeny. Genes and Development, 2013, 27, 39-51.	2.7	33
60	Tracing the cellular origin of cancer. Nature Cell Biology, 2013, 15, 126-134.	4.6	231
61	The expression of Sox17 identifies and regulates haemogenic endothelium. Nature Cell Biology, 2013, 15, 502-510.	4.6	143
62	Fondation René Touraine. Experimental Dermatology, 2013, 22, 682-693.	1.4	0
63	Cédric Blanpain: The stories stem cells tell. Journal of Cell Biology, 2012, 199, 4-5.	2.3	0
64	Tracing epithelial stem cells during development, homeostasis, and repair. Journal of Cell Biology, 2012, 197, 575-584.	2.3	61
65	Multipotent and unipotent progenitors contribute to prostate postnatal development. Nature Cell Biology, 2012, 14, 1131-1138.	4.6	193
66	Characterization and Clinical Evaluation of CD10+ Stroma Cells in the Breast Cancer Microenvironment. Clinical Cancer Research, 2012, 18, 1004-1014.	3.2	46
67	366 days: Nature's 10. Nature, 2012, 492, 335-343.	13.7	0
68	Skin squamous cell carcinoma propagating cells increase with tumour progression and invasiveness. EMBO Journal, 2012, 31, 4563-4575.	3.5	73
69	Epidermal development and homeostasis. Seminars in Cell and Developmental Biology, 2012, 23, 883.	2.3	4
70	Adult interfollicular tumour-initiating cells are reprogrammed into an embryonic hair follicle progenitor-like fate during basal cell carcinoma initiation. Nature Cell Biology, 2012, 14, 1282-1294.	4.6	117
71	Identification of Stem Cell Populations in Sweat Glands and Ducts Reveals Roles in Homeostasis and Wound Repair. Cell, 2012, 150, 136-150.	13.5	265
72	Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature, 2012, 489, 257-262.	13.7	494

#	Article	IF	CITATIONS
73	Mechanisms regulating epidermal stem cells. EMBO Journal, 2012, 31, 2067-2075.	3.5	63
74	Defining the mode of tumour growth by clonal analysis. Nature, 2012, 488, 527-530.	13.7	662
75	Development and Homeostasis of the Skin Epidermis. Cold Spring Harbor Perspectives in Biology, 2012, 4, a008383-a008383.	2.3	83
76	Stem cells assessed. Nature Reviews Molecular Cell Biology, 2012, 13, 471-476.	16.1	31
77	Eomesodermin induces Mesp1 expression and cardiac differentiation from embryonic stem cells in the absence of Activin. EMBO Reports, 2012, 13, 355-362.	2.0	50
78	Distinct stem cells contribute to mammary gland development and maintenance. Nature, 2011, 479, 189-193.	13.7	733
79	A vascular niche and a VEGF–Nrp1 loop regulate the initiation and stemness of skin tumours. Nature, 2011, 478, 399-403.	13.7	410
80	DNA-Damage Response in Tissue-Specific and Cancer Stem Cells. Cell Stem Cell, 2011, 8, 16-29.	5.2	288
81	Long Live Sox2: Sox2 Lasts a Lifetime. Cell Stem Cell, 2011, 9, 283-284.	5.2	24
82	DNA damage response in adult stem cells: pathways and consequences. Nature Reviews Molecular Cell Biology, 2011, 12, 198-202.	16.1	172
83	Defining the earliest step of cardiovascular progenitor specification during embryonic stem cell differentiation. Journal of Cell Biology, 2011, 192, 751-765.	2.3	114
84	Identifying the cellular origin of squamous skin tumors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7431-7436.	3.3	257
85	Skin regeneration and repair. Nature, 2010, 464, 686-687.	13.7	92
86	Identification of the cell lineage at the origin of basal cell carcinoma. Nature Cell Biology, 2010, 12, 299-305.	4.6	345
87	Bcl-2 and accelerated DNA repair mediates resistance of hair follicle bulge stem cells to DNA-damage-induced cell death. Nature Cell Biology, 2010, 12, 572-582.	4.6	222
88	Mesp1. Circulation Research, 2010, 107, 1414-1427.	2.0	143
89	A Dominant Role of the Hair Follicle Stem Cell Niche in Regulating Melanocyte Stemness. Cell Stem Cell, 2010, 6, 95-96.	5.2	7
90	Epidermal progenitors give rise to Merkel cells during embryonic development and adult homeostasis. Journal of Cell Biology, 2009, 187, 91-100.	2.3	240

#	Article	IF	CITATIONS
91	Epidermal homeostasis: a balancing act of stem cells in the skin. Nature Reviews Molecular Cell Biology, 2009, 10, 207-217.	16.1	1,076
92	Mesp1 Acts as a Master Regulator of Multipotent Cardiovascular Progenitor Specification. Cell Stem Cell, 2008, 3, 69-84.	5.2	341
93	The Majority of Multipotent Epidermal Stem Cells Do Not Protect Their Genome by Asymmetrical Chromosome Segregation. Stem Cells, 2008, 26, 2964-2973.	1.4	64
94	Epithelial Stem Cells: Turning over New Leaves. Cell, 2007, 128, 445-458.	13.5	511
95	p63: revving up epithelial stem-cell potential. Nature Cell Biology, 2007, 9, 731-733.	4.6	91
96	Epidermal Stem Cells of the Skin. Annual Review of Cell and Developmental Biology, 2006, 22, 339-373.	4.0	681
97	A Distant Upstream Locus Control Region Is Critical for Expression of the Kit Receptor Gene in Mast Cells. Molecular and Cellular Biology, 2006, 26, 5850-5860.	1.1	36
98	Canonical notch signaling functions as a commitment switch in the epidermal lineage. Genes and Development, 2006, 20, 3022-3035.	2.7	368
99	Defining the impact of Â-catenin/Tcf transactivation on epithelial stem cells. Genes and Development, 2005, 19, 1596-1611.	2.7	348
100	Mutation of the DRY Motif Reveals Different Structural Requirements for the CC Chemokine Receptor 5-Mediated Signaling and Receptor Endocytosis. Molecular Pharmacology, 2005, 67, 1966-1976.	1.0	88
101	Defining the Epithelial Stem Cell Niche in Skin. Science, 2004, 303, 359-363.	6.0	1,877
102	Self-Renewal, Multipotency, and the Existence of Two Cell Populations within an Epithelial Stem Cell Niche. Cell, 2004, 118, 635-648.	13.5	1,300
103	Specific Recruitment of Antigen-presenting Cells by Chemerin, a Novel Processed Ligand from Human Inflammatory Fluids. Journal of Experimental Medicine, 2003, 198, 977-985.	4.2	755
104	Activation of CCR5 by Chemokines Involves an Aromatic Cluster between Transmembrane Helices 2 and 3. Journal of Biological Chemistry, 2003, 278, 1892-1903.	1.6	85
105	G Protein-Dependent CCR5 Signaling Is Not Required for Efficient Infection of Primary T Lymphocytes and Macrophages by R5 Human Immunodeficiency Virus Type 1 Isolates. Journal of Virology, 2003, 77, 2550-2558.	1.5	61
106	The Core Domain of Chemokines Binds CCR5 Extracellular Domains while Their Amino Terminus Interacts with the Transmembrane Helix Bundle. Journal of Biological Chemistry, 2003, 278, 5179-5187.	1.6	144
107	Serotonin 5-HT2B receptor loss of function mutation in a patient with fenfluramine-associated primary pulmonary hypertension. Cardiovascular Research, 2003, 60, 518-528.	1.8	53
108	Constitutive Agonist-independent CCR5 Oligomerization and Antibody-mediated Clustering Occurring at Physiological Levels of Receptors. Journal of Biological Chemistry, 2002, 277, 34666-34673.	1.6	183

#	Article	IF	CITATIONS
109	The Metastasis Suppressor Gene KiSS-1 Encodes Kisspeptins, the Natural Ligands of the Orphan G Protein-coupled Receptor GPR54. Journal of Biological Chemistry, 2001, 276, 34631-34636.	1.6	1,283
110	The TXP Motif in the Second Transmembrane Helix of CCR5. Journal of Biological Chemistry, 2001, 276, 13217-13225.	1.6	118
111	Palmitoylation of CCR5 Is Critical for Receptor Trafficking and Efficient Activation of Intracellular Signaling Pathways. Journal of Biological Chemistry, 2001, 276, 23795-23804.	1.6	125
112	Epitope Mapping of CCR5 Reveals Multiple Conformational States and Distinct but Overlapping Structures Involved in Chemokine and Coreceptor Function. Journal of Biological Chemistry, 1999, 274, 9617-9626.	1.6	327
113	Extracellular Cysteines of CCR5 Are Required for Chemokine Binding, but Dispensable for HIV-1 Coreceptor Activity. Journal of Biological Chemistry, 1999, 274, 18902-18908.	1.6	104
114	Multiple Charged and Aromatic Residues in CCR5 Amino-terminal Domain Are Involved in High Affinity Binding of Both Chemokines and HIV-1 Env Protein. Journal of Biological Chemistry, 1999, 274, 34719-34727.	1.6	137
115	Functional Dissection of CCR5 Coreceptor Function through the Use of CD4-Independent Simian Immunodeficiency Virus Strains. Journal of Virology, 1999, 73, 4062-4073.	1.5	88