Lisa Giovannelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4324030/publications.pdf

Version: 2024-02-01

76294 82499 5,460 87 40 72 citations h-index g-index papers 88 88 88 6904 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Colon fibroblasts from Pirc rats (<scp>F344</scp> / <scp>NTacâ€<i>Apc</i></scp> ^{am1137}) exhibit a proliferative and inflammatory phenotype that could support early stages of colon carcinogenesis. International Journal of Cancer, 2022, 150, 362-373.	2.3	4
2	Characterization of substituted piperazines able to reverse MDR in <i>Escherichia coli </i> strains overexpressing resistance-nodulation-cell division (RND) efflux pumps. Journal of Antimicrobial Chemotherapy, 2022, 77, 413-424.	1.3	4
3	Olive phenols preserve lamin B1 expression reducing cGAS/STING/NFκBâ€mediated SASP in ionizing radiationâ€induced senescence. Journal of Cellular and Molecular Medicine, 2022, 26, 2337-2350.	1.6	10
4	The comet assay for the evaluation of gut content genotoxicity: Use in human studies as an early biomarker of colon cancer risk. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2022, 878, 503477.	0.9	2
5	Effects of an Olive By-Product Called PâtÃ \otimes on Cardiovascular Risk Factors. Journal of the American College of Nutrition, 2021, 40, 617-623.	1.1	16
6	Susceptibility of cosmeceutical peptides to proteases activity: Development of dermal stability test by LC-MS/MS analysis. Journal of Pharmaceutical and Biomedical Analysis, 2021, 194, 113775.	1.4	4
7	Collection and storage of human white blood cells for analysis of DNA damage and repair activity using the comet assay in molecular epidemiology studies. Mutagenesis, 2021, 36, 193-212.	1.0	20
8	Synthesis of functionalised organochalcogenides and in vitro evaluation of their antioxidant activity. Bioorganic Chemistry, 2021, 110, 104812.	2.0	20
9	Enhanced Vasculogenic Capacity Induced by 5-Fluorouracil Chemoresistance in a Gastric Cancer Cell Line. International Journal of Molecular Sciences, 2021, 22, 7698.	1.8	11
10	Novel methods to detect ROS in viable spermatozoa of native semen samples. Reproductive Toxicology, 2021, 106, 51-60.	1.3	10
11	Phenolic Compounds and Triterpenes in Different Olive Tissues and Olive Oil By-Products, and Cytotoxicity on Human Colorectal Cancer Cells: The Case of Frantoio, Moraiolo and Leccino Cultivars (Olea europaea L.). Foods, 2021, 10, 2823.	1.9	18
12	Parvovirus B19 induces cellular senescence in human dermal fibroblasts: putative role in systemic sclerosis–associated fibrosis. Rheumatology, 2021, , .	0.9	5
13	Application of the comet assay in human biomonitoring: An hCOMET perspective. Mutation Research - Reviews in Mutation Research, 2020, 783, 108288.	2.4	95
14	Minimum Information for Reporting on the Comet Assay (MIRCA): recommendations for describing comet assay procedures and results. Nature Protocols, 2020, 15, 3817-3826.	5 . 5	189
15	Effect of Dipeptidyl-Peptidase 4 Inhibitors on Circulating Oxidative Stress Biomarkers in Patients with Type 2 Diabetes Mellitus. Antioxidants, 2020, 9, 233.	2.2	7
16	DNA damage in colon mucosa of Pirc rats, an Apc-driven model of colon tumorigenesis. Toxicology Letters, 2020, 324, 12-19.	0.4	8
17	Oxidative Stress and Inflammation as Targets for Novel Preventive and Therapeutic Approches in Non Communicable Diseases. Antioxidants, 2020, 9, 290.	2.2	13
18	Chronic Resveratrol Treatment Reduces the Pro-angiogenic Effect of Human Fibroblast "Senescent-Associated Secretory Phenotype―on Endothelial Colony-Forming Cells: The Role of IL8. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 625-633.	1.7	14

#	Article	IF	CITATIONS
19	miRâ€210â€3p mediates metabolic adaptation and sustains DNA damage repair of resistant colon cancer cells to treatment with 5â€fluorouracil. Molecular Carcinogenesis, 2019, 58, 2181-2192.	1.3	11
20	Opioid response in paediatric cancer patients and the Val158Met polymorphism of the human catechol-O-methyltransferase (COMT) gene: an Italian study on 87 cancer children and a systematic review. BMC Cancer, 2019, 19, 113.	1.1	9
21	The comet assay for human biomonitoring: Effect of cryopreservation on DNA damage in different blood cell preparations. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2019, 843, 11-17.	0.9	36
22	Fecal microbiome as determinant of the effect of diet on colorectal cancer risk: comparison of meat-based versus pesco-vegetarian diets (the MeaTlc study). Trials, 2019, 20, 688.	0.7	14
23	Folate, genomic stability and colon cancer: The use of single cell gel electrophoresis in assessing the impact of folate in vitro, in vivo and in human biomonitoring. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2019, 843, 73-80.	0.9	18
24	Oleuropein aglycone attenuates the pro-angiogenic phenotype of senescent fibroblasts: A functional study in endothelial cells. Journal of Functional Foods, 2019, 53, 219-226.	1.6	14
25	A two-phase olive mill by-product (p \tilde{A} ¢ \tilde{A} ©) as a convenient source of phenolic compounds: Content, stability, and antiaging properties in cultured human fibroblasts. Journal of Functional Foods, 2018, 40, 751-759.	1.6	41
26	Aging related changes in circulating reactive oxygen species (ROS) and protein carbonyls are indicative of liver oxidative injury. Toxicology Reports, 2018, 5, 141-145.	1.6	57
27	Characterization of serious adverse drug reactions as cause of emergency department visit in children: a 5-years active pharmacovigilance study. BMC Pharmacology & Emp; Toxicology, 2018, 19, 16.	1.0	43
28	Pomegranate Byâ€Products in Colorectal Cancer Chemoprevention: Effects in <i>Apc</i> Pomegranate Byâ€Products in Colorectal Cancer Chemoprevention: Effects in <i>Apc</i> Pomegranate Byâ€Products in Colorectal Cancer Chemoprevention: Effects in <i>Apc</i> Pomegranate Byâ€Products in Colorectal Cancer Chemoprevention: Effects in <i>Apc</i> Pomegranate Byâ€Products in Colorectal Cancer Chemoprevention: Effects in <i>Apc</i> Pomegranate Byâ€Products in Colorectal Cancer Chemoprevention: Effects in <i>Apc</i> Pomegranate Byâ€Products in Colorectal Cancer Chemoprevention: Effects in <i>Apc</i> Pomegranate Byâ€Products in Colorectal Cancer Chemoprevention: Effects in <i>Apc</i> Pomegranate Byâ€Products in Colorectal Cancer Chemoprevention: Effects in <i>Apc</i> Pomegranate Byâ€Products in Colorectal Cancer Chemoprevention: Effects in <i>Apc</i> Pomegranate Byâ€Products in Colorectal Cancer Chemoprevention: Effects in <i apc<="" i="">Pomegranate Byâ€Products in Colorectal Cancer Chemoprevention: Effects in <i apc<="" i="">Pomegranate ByâfProducts in Colorectal Cancer Chemoprevention: Effects in <i apc<="" i="">Pomegranate ByâfProducts in Colorectal Cancer Chemoprevention: Effects in <i apc<="" i="">Pomegranate ByâfProducts in Colorectal Cancer Chemoprevention: Effects in <i apc<="" i="">Pomegranate ByâfProducts in Cancer Chemoprevention: Effects in <i apc<="" i="">Pomegranate ByâfProducts in Cancer Chemoprevention: Effects in <i apc<="" i="">Pomegranate ByâfProducts in Cancer Chemoprevention: Effects in <i apc<="" i="">Pomegranate ByâfProducts in Cancer Chemoprevention: Effects in <i apc<="" i="">Pomegranate ByâfProducts in Cancer Chemoprevention: Effects in <i apc<="" i="">Pomegranate ByâfProducts in Cancer Chemoprevention: Effects in <i apc<="" i="">Pomegranate ByâfProducts in <i apc<="" i="">Pomeg</i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	1.5	27
29	Dietary Extra-Virgin Olive Oil Polyphenols Do Not Attenuate Colon Inflammation in Transgenic HLAB-27 Rats but Exert Hypocholesterolemic Effects through the Modulation of HMGCR and PPAR-α Gene Expression in the Liver. Lifestyle Genomics, 2018, 11, 99-108.	0.6	17
30	Serpin A1 and the modulation of type I collagen turnover: Effect of the Câ€terminal peptide 409–418 (SA1â€III) in human dermal fibroblasts. Cell Biology International, 2018, 42, 1340-1348.	1.4	7
31	A nutrigenomics approach for the study of anti-aging interventions: olive oil phenols and the modulation of gene and microRNA expression profiles in mouse brain. European Journal of Nutrition, 2017, 56, 865-877.	1.8	53
32	Chronic Resveratrol Treatment Inhibits MRC5 Fibroblast SASP-Related Protumoral Effects on Melanoma Cells. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, 1187-1195.	1.7	29
33	Nutrigenomics of extraâ€virgin olive oil: A review. BioFactors, 2017, 43, 17-41.	2.6	147
34	Modulation of the Senescence-Associated Inflammatory Phenotype in Human Fibroblasts by Olive Phenols. International Journal of Molecular Sciences, 2017, 18, 2275.	1.8	42
35	Serpin A1 Câ€Terminal Peptides as Collagen Turnover Modulators. ChemMedChem, 2016, 11, 1850-1855.	1.6	6
36	Long-term Neuroglial Cocultures as a Brain Aging Model: Hallmarks of Senescence, MicroRNA Expression Profiles, and Comparison With In Vivo Models. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 50-60.	1.7	46

3

#	Article	IF	CITATIONS
37	Chronic Resveratrol Treatment Ameliorates Cell Adhesion and Mitigates the Inflammatory Phenotype in Senescent Human Fibroblasts. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2013, 68, 371-381.	1.7	48
38	Long-Term Dietary Extra-Virgin Olive Oil Rich in Polyphenols Reverses Age-Related Dysfunctions in Motor Coordination and Contextual Memory in Mice: Role of Oxidative Stress. Rejuvenation Research, 2012, 15, 601-612.	0.9	64
39	Beneficial effects of olive oil phenols on the aging process: Experimental evidence and possible mechanisms of action. Nutrition and Aging (Amsterdam, Netherlands), 2012, 1, 207-223.	0.3	19
40	Inter- and intra-tumoral heterogeneity in DNA damage evaluated by comet assay in early breast cancer patients. Breast, 2012, 21, 336-342.	0.9	12
41	Protective Effects of Resveratrol Against Senescence-Associated Changes in Cultured Human Fibroblasts. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2011, 66A, 9-18.	1.7	68
42	Effects of de-alcoholised wines with different polyphenol content on DNA oxidative damage, gene expression of peripheral lymphocytes, and haemorheology: an intervention study in post-menopausal women. European Journal of Nutrition, 2011, 50, 19-29.	1.8	24
43	Pharmacological Effects of Exogenous NAD on Mitochondrial Bioenergetics, DNA Repair, and Apoptosis. Molecular Pharmacology, 2011, 80, 1136-1146.	1.0	109
44	Dietary extra-virgin olive oil rich in phenolic antioxidants and the aging process: long-term effects in the rat. Journal of Nutritional Biochemistry, 2010, 21, 290-296.	1.9	44
45	Effects of dietary extra-virgin olive oil on behaviour and brain biochemical parameters in ageing rats. British Journal of Nutrition, 2010, 103, 1674-1683.	1.2	60
46	Environmental ozone exposure and oxidative DNA damage in adult residents of Florence, Italy. Environmental Pollution, 2009, 157, 1521-1525.	3.7	28
47	Reduction of colonic inflammation in HLA-B27 transgenic rats by feeding Marie Ménard apples, rich in polyphenols. British Journal of Nutrition, 2009, 102, 1620.	1.2	43
48	Oxidative DNA damage and plasma antioxidant capacity in type 2 diabetic patients with good and poor glycaemic control. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2008, 638, 98-102.	0.4	76
49	The comet assay: topical issues. Mutagenesis, 2008, 23, 143-151.	1.0	811
50	Liver and colon DNA oxidative damage and gene expression profiles of rats fed Arabidopsis thaliana mutant seeds containing contrasted flavonoids. Food and Chemical Toxicology, 2008, 46, 1213-1220.	1.8	25
51	Calibration of the comet assay for the measurement of DNA damage in mammalian cells. Free Radical Research, 2006, 40, 1149-1154.	1.5	14
52	Seasonal variations of DNA damage in human lymphocytes: Correlation with different environmental variables. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2006, 593, 143-152.	0.4	24
53	Daily consumption of a high-phenol extra-virgin olive oil reduces oxidative DNA damage in postmenopausal women. British Journal of Nutrition, 2006, 95, 742-751.	1.2	153
54	Red wine polyphenols influence carcinogenesis, intestinal microflora, oxidative damage and gene expression profiles of colonic mucosa in F344 rats. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 591, 237-246.	0.4	269

#	Article	IF	CITATIONS
55	FGF2-mediated upregulation of urokinase-type plasminogen activator expression requires a MAP-kinase dependent activation of poly(ADP-ribose) polymerase. Journal of Cellular Physiology, 2005, 202, 125-134.	2.0	6
56	The Comet Assay Approach to Senescent Human Diploid Fibroblasts Identifies Different Phenotypes and Clarifies Relationships Among Nuclear Size, DNA Content, and DNA Damage. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2005, 60, 695-701.	1.7	10
57	Establishing the background level of base oxidation in human lymphocyte DNA: results of an interlaboratory validation study. FASEB Journal, 2005, 19, 82-84.	0.2	404
58	Extremely Low-Frequency Electromagnetic Fields do not Affect DNA Damage and Gene Expression Profiles of Yeast and Human Lymphocytes. Radiation Research, 2005, 164, 277-285.	0.7	38
59	Loss of tyrosinase activity confers increased skin tumor susceptibility in mice. Oncogene, 2004, 23, 4130-4135.	2.6	21
60	Increased oxidative DNA damage in mononuclear leukocytes in vitiligo. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2004, 556, 101-106.	0.4	38
61	Measurement of DNA oxidation in human cells by chromatographic and enzymic methods. Free Radical Biology and Medicine, 2003, 34, 1089-1099.	1.3	268
62	Vulnerability to DNA damage in the aging rat substantia nigra: a study with the comet assay. Brain Research, 2003, 969, 244-247.	1.1	35
63	Oxidative DNA damage in peripheral blood cells in type 2 diabetes mellitus: higher vulnerability of polymorphonuclear leukocytes. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2003, 529, 129-133.	0.4	83
64	Association between atmospheric ozone levels and damage to human nasal mucosa in Florence, Italy. Environmental and Molecular Mutagenesis, 2003, 42, 127-135.	0.9	27
65	Measurement of DNA breaks and oxidative damage in polymorphonuclear and mononuclear white blood cells: a novel approach using the comet assay. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2003, 538, 71-80.	0.9	52
66	Effect of 4-coumaric and 3,4-dihydroxybenzoic acid on oxidative DNA damage in rat colonic mucosa. British Journal of Nutrition, 2003, 89, 581-587.	1.2	70
67	Nutritional and lifestyle determinants of DNA oxidative damage: a study in a Mediterranean population. Carcinogenesis, 2002, 23, 1483-1489.	1.3	96
68	Comparative analysis of baseline 8-oxo-7,8-dihydroguanine in mammalian cell DNA, by different methods in different laboratories: an approach to consensus. Carcinogenesis, 2002, 23, 2129-2133.	1.3	202
69	Effect of N-acetyl-l-cysteine on peroxynitrite and superoxide anion production of lung alveolar macrophages in systemic sclerosis. Nitric Oxide - Biology and Chemistry, 2002, 7, 277-282.	1.2	48
70	Endogenous histamine in the medial septum-diagonal band complex increases the release of acetylcholine from the hippocampus: a dual-probe microdialysis study in the freely moving rat. European Journal of Neuroscience, 2002, 15, 1669-1680.	1.2	56
71	Comet Assay as a Novel Approach for Studying DNA Damage in Focal Cerebral Ischemia: Differential Effects of NMDA Receptor Antagonists and Poly(ADP-Ribose) Polymerase Inhibitors. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 697-704.	2.4	58
72	Guanosine $3\hat{a}\in 2: \hat{a}\in f$ $5\hat{a}\in 2$ -cyclic monophosphate-dependent pathway alterations in ventricular cardiomyocytes of spontaneously hypertensive rats. British Journal of Pharmacology, 2001, 134, 596-602.	2.7	13

#	Article	IF	CITATIONS
73	NGF treatment potentiates c-fos expression in the rat nucleus basalis upon excitotoxic lesion with quisqualic acid. Brain Research, 2000, 853, 136-141.	1.1	3
74	$\hat{l}^2(1\hat{a}\in 40)$ Amyloid peptide injection into the nucleus basalis of rats induces microglia reaction and enhances cortical \hat{l}^3 -aminobutyric acid release in vivo. Brain Research, 1999, 831, 319-321.	1.1	30
75	Interleukin- $1\hat{l}^2$ activates forebrain glial cells and increases nitric oxide production and cortical glutamate and GABA release in vivo: implications for Alzheimer's disease. Neuroscience, 1999, 91, 831-842.	1.1	113
76	B1 receptor involvement in the effect of bradykinin on venular endothelial cell proliferation and potentiation of FGF-2 effects. British Journal of Pharmacology, 1998, 124, 1286-1292.	2.7	80
77	Long-term changes in the aggregation state and toxic effects of \hat{l}^2 -amyloid injected into the rat brain. Neuroscience, 1998, 87, 349-357.	1.1	61
78	Morphological, biochemical and behaviouralchanges induced by neurotoxic and inflammatory insultsto the nucleus basalis. International Journal of Developmental Neuroscience, 1998, 16, 705-714.	0.7	20
79	Differential effects of amyloid peptides β-(1–40) and β-(25–35) injections into the rat nucleus basalis. Neuroscience, 1995, 66, 781-792.	1.1	169
80	Administration of amyloid \hat{l}^2 -peptides into the medial septum of rats decreases acetylcholine release from hippocampus in vivo. Brain Research, 1994, 636, 162-164.	1.1	85
81	Chapter 9 The central cholinergic system during aging. Progress in Brain Research, 1994, 100, 67-71.	0.9	62
82	c-Fos protein expression in the rat subfornical organ following osmotic stimulation. Neuroscience Letters, 1992, 139, 1-6.	1.0	47
83	Expression of c-fos protein by immunohistochemically identified oxytocin neurons in the rat hypothalamus upon osmotic stimulation. Brain Research, 1992, 588, 41-48.	1.1	54
84	Oxytocin neurons in the rat hypothalamus exhibit c-fos immunoreactivity upon osmotic stress. Brain Research, 1990, 531, 299-303.	1.1	107
85	Purinergic modulation of cortical acetylcholine release is decreased in aging rats. Experimental Gerontology, 1988, 23, 175-181.	1.2	22
86	Effect of Adenosine, Adenosine Derivatives, and Caffeine on Acetylcholine Release from Brain Synaptosomes: Interaction with Muscarinic Autoregulatory Mechanisms. Journal of Neurochemistry, 1986, 46, 1593-1598.	2.1	55
87	Phosphatidylserine increases acetylcholine release from cortical slices in aged rats. Neurobiology of Aging, 1985, 6, 337-339.	1.5	69