Frances H Arnold

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4323975/publications.pdf Version: 2024-02-01

		1704	3486
295	38,897	104	182
papers	citations	h-index	g-index
334	334	334	22673
554	224	554	22073
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device. Physical Review Letters, 2001, 86, 4163-4166.	7.8	1,752
2	Protein stability promotes evolvability. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5869-5874.	7.1	1,004
3	Exploring protein fitness landscapes by directed evolution. Nature Reviews Molecular Cell Biology, 2009, 10, 866-876.	37.0	890
4	A microfabricated fluorescence-activated cell sorter. Nature Biotechnology, 1999, 17, 1109-1111.	17.5	842
5	Engineering microbial consortia: a new frontier in synthetic biology. Trends in Biotechnology, 2008, 26, 483-489.	9.3	809
6	Directed Evolution: Bringing New Chemistry to Life. Angewandte Chemie - International Edition, 2018, 57, 4143-4148.	13.8	734
7	Molecular evolution by staggered extension process (StEP) in vitro recombination. Nature Biotechnology, 1998, 16, 258-261.	17.5	690
8	Olefin Cyclopropanation via Carbene Transfer Catalyzed by Engineered Cytochrome P450 Enzymes. Science, 2013, 339, 307-310.	12.6	678
9	Design by Directed Evolution. Accounts of Chemical Research, 1998, 31, 125-131.	15.6	584
10	Machine-learning-guided directed evolution for protein engineering. Nature Methods, 2019, 16, 687-694.	19.0	580
11	Directed evolution of cytochrome c for carbon–silicon bond formation: Bringing silicon to life. Science, 2016, 354, 1048-1051.	12.6	465
12	Engineering new catalytic activities in enzymes. Nature Catalysis, 2020, 3, 203-213.	34.4	465
13	Laboratory evolution of peroxide-mediated cytochrome P450 hydroxylation. Nature, 1999, 399, 670-673.	27.8	427
14	A synthetic <i>Escherichia coli</i> predator–prey ecosystem. Molecular Systems Biology, 2008, 4, 187.	7.2	425
15	Expanding the Enzyme Universe: Accessing Nonâ€Natural Reactions by Mechanismâ€Guided Directed Evolution. Angewandte Chemie - International Edition, 2015, 54, 3351-3367.	13.8	421
16	Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents. Nature Biotechnology, 1996, 14, 458-467.	17.5	413
17	Directed evolution of a genetic circuit. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16587-16591.	7.1	406
18	Combinatorial and computational challenges for biocatalyst design. Nature, 2001, 409, 253-257.	27.8	392

#	Article	IF	CITATIONS
19	Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nature Biotechnology, 2002, 20, 1135-1139.	17.5	379
20	Machine learning-assisted directed protein evolution with combinatorial libraries. Proceedings of the United States of America, 2019, 116, 8852-8858.	7.1	375
21	Metal-Affinity Separations: A New Dimension in Protein Processing. Nature Biotechnology, 1991, 9, 151-156.	17.5	356
22	How enzymes adapt: lessons from directed evolution. Trends in Biochemical Sciences, 2001, 26, 100-106.	7.5	351
23	Directed evolution of biocatalysts. Current Opinion in Chemical Biology, 1999, 3, 54-59.	6.1	348
24	Inverting enantioselectivity by directed evolution of hydantoinase for improved production of l-methionine. Nature Biotechnology, 2000, 18, 317-320.	17.5	331
25	Directed evolution of enzyme catalysts. Trends in Biotechnology, 1997, 15, 523-530.	9.3	330
26	Molecular breeding of carotenoid biosynthetic pathways. Nature Biotechnology, 2000, 18, 750-753.	17.5	327
27	Thermodynamic prediction of protein neutrality. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 606-611.	7.1	320
28	Enzymatic functionalization of carbon–hydrogen bonds. Chemical Society Reviews, 2011, 40, 2003-2021.	38.1	320
29	Enantioselective, intermolecular benzylic C–H amination catalysed by an engineered iron-haem enzyme. Nature Chemistry, 2017, 9, 629-634.	13.6	319
30	Regio- and Enantioselective Alkane Hydroxylation with Engineered Cytochromes P450 BM-3. Journal of the American Chemical Society, 2003, 125, 13442-13450.	13.7	316
31	A serine-substituted P450 catalyzes highly efficient carbene transfer to olefins in vivo. Nature Chemical Biology, 2013, 9, 485-487.	8.0	297
32	Directed evolution converts subtilisin E into a functional equivalent of thermitase. Protein Engineering, Design and Selection, 1999, 12, 47-53.	2.1	290
33	Directed enzyme evolution: climbing fitness peaks one amino acid at a time. Current Opinion in Chemical Biology, 2009, 13, 3-9.	6.1	285
34	Innovation by Evolution: Bringing New Chemistry to Life (Nobel Lecture). Angewandte Chemie - International Edition, 2019, 58, 14420-14426.	13.8	277
35	Cytochrome P450: taming a wild type enzyme. Current Opinion in Biotechnology, 2011, 22, 809-817.	6.6	273
36	Functional Expression of a Fungal Laccase in <i>Saccharomyces cerevisiae</i> by Directed Evolution. Applied and Environmental Microbiology, 2003, 69, 987-995.	3.1	254

#	Article	IF	CITATIONS
37	Exploiting and engineering hemoproteins for abiological carbene and nitrene transfer reactions. Current Opinion in Biotechnology, 2017, 47, 102-111.	6.6	253
38	Directed enzyme evolution. Current Opinion in Biotechnology, 2001, 12, 545-551.	6.6	252
39	Navigating the protein fitness landscape with Gaussian processes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E193-201.	7.1	252
40	Enantioselective Intramolecular CH Amination Catalyzed by Engineered Cytochrome P450 Enzymes Inâ€Vitro and Inâ€Vivo. Angewandte Chemie - International Edition, 2013, 52, 9309-9312.	13.8	248
41	A family of thermostable fungal cellulases created by structure-guided recombination. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5610-5615.	7.1	244
42	Directed evolution study of temperature adaptation in a psychrophilic enzyme 1 1Edited by J. A. Wells. Journal of Molecular Biology, 2000, 297, 1015-1026.	4.2	243
43	Engineered metal-binding proteins: purification to protein folding. Science, 1991, 252, 1796-1797.	12.6	242
44	Genetically programmed chiral organoborane synthesis. Nature, 2017, 552, 132-136.	27.8	237
45	Enzymatic assembly of carbon–carbon bonds via iron-catalysed sp3 C–H functionalization. Nature, 2019, 565, 67-72.	27.8	233
46	Libraries of hybrid proteins from distantly related sequences. Nature Biotechnology, 2001, 19, 456-460.	17.5	226
47	Directed evolution of subtilisin E in <i>Bacillus subtilis</i> to enhance total activity in aqueous dimethylformamide. Protein Engineering, Design and Selection, 1996, 9, 77-83.	2.1	224
48	Learned protein embeddings for machine learning. Bioinformatics, 2018, 34, 2642-2648.	4.1	223
49	Engineered Alkaneâ€Hydroxylating Cytochrome P450 _{BM3} Exhibiting Nativelike Catalytic Properties. Angewandte Chemie - International Edition, 2007, 46, 8414-8418.	13.8	221
50	Synthesis of bioactive protein hydrogels by genetically encoded SpyTag-SpyCatcher chemistry. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11269-11274.	7.1	221
51	Protein building blocks preserved by recombination. Nature Structural Biology, 2002, 9, 553-8.	9.7	216
52	A Self-Sufficient Peroxide-Driven Hydroxylation Biocatalyst. Angewandte Chemie - International Edition, 2003, 42, 3299-3301.	13.8	203
53	Diversifying Carotenoid Biosynthetic Pathways by Directed Evolution. Microbiology and Molecular Biology Reviews, 2005, 69, 51-78.	6.6	191
54	Exploring Nonnatural Evolutionary Pathways by Saturation Mutagenesis: Rapid Improvement of Protein Function. Journal of Molecular Evolution, 1999, 49, 716-720.	1.8	187

#	Article	IF	CITATIONS
55	Dual selection enhances the signaling specificity of a variant of the quorum-sensing transcriptional activator LuxR. Nature Biotechnology, 2006, 24, 708-712.	17.5	186
56	Evolutionary History of a Specialized P450 Propane Monooxygenase. Journal of Molecular Biology, 2008, 383, 1069-1080.	4.2	185
57	Enzymatic construction of highly strained carbocycles. Science, 2018, 360, 71-75.	12.6	179
58	The temkin isotherm describes heterogeneous protein adsorption. BBA - Proteins and Proteomics, 1995, 1247, 293-297.	2.1	173
59	Enzyme Engineering for Nonaqueous Solvents: Random Mutagenesis to Enhance Activity of Subtilisin E in Polar Organic Media. Bio/technology, 1991, 9, 1073-1077.	1.5	171
60	Improved Cyclopropanation Activity of Histidine‣igated Cytochromeâ€P450 Enables the Enantioselective Formal Synthesis of Levomilnacipran. Angewandte Chemie - International Edition, 2014, 53, 6810-6813.	13.8	171
61	Navigating the Unnatural Reaction Space: Directed Evolution of Heme Proteins for Selective Carbene and Nitrene Transfer. Accounts of Chemical Research, 2021, 54, 1209-1225.	15.6	161
62	Cytochrome P450-catalyzed insertion of carbenoids into N–H bonds. Chemical Science, 2014, 5, 598-601.	7.4	160
63	Analysis of affinity separations. The Chemical Engineering Journal, 1985, 30, B9-B23.	0.3	158
64	Enantioselective Enzyme-Catalyzed Aziridination Enabled by Active-Site Evolution of a Cytochrome P450. ACS Central Science, 2015, 1, 89-93.	11.3	154
65	Metal-coordination interactions in the template-mediated synthesis of substrate-selective polymers: recognition of bis(imidazole) substrates by copper(II) iminodiacetate containing polymers. Macromolecules, 1992, 25, 7051-7059.	4.8	153
66	Enzyme-Controlled Nitrogen-Atom Transfer Enables Regiodivergent C–H Amination. Journal of the American Chemical Society, 2014, 136, 15505-15508.	13.7	152
67	Strategies for the in vitro evolution of protein function: enzyme evolution by random recombination of improved sequences 1 1Edited by J. Wells. Journal of Molecular Biology, 1997, 272, 336-347.	4.2	150
68	Anti-Markovnikov alkene oxidation by metal-oxo–mediated enzyme catalysis. Science, 2017, 358, 215-218.	12.6	149
69	Neutral genetic drift can alter promiscuous protein functions, potentially aiding functional evolution. Biology Direct, 2007, 2, 17.	4.6	146
70	An enzymatic platform for the asymmetric amination of primary, secondary and tertiary C(sp3)–H bonds. Nature Chemistry, 2019, 11, 987-993.	13.6	146
71	Metal-Induced Dispersion of Lipid Aggregates: A Simple, Selective, and Sensitive Fluorescent Metal Ion Sensor. Angewandte Chemie International Edition in English, 1995, 34, 905-907.	4.4	145
72	A diverse family of thermostable cytochrome P450s created by recombination of stabilizing fragments. Nature Biotechnology, 2007, 25, 1051-1056.	17.5	144

#	Article	IF	CITATIONS
73	Design and evolution of enzymes for non-natural chemistry. Current Opinion in Green and Sustainable Chemistry, 2017, 7, 23-30.	5.9	144
74	Enantioselective α-Hydroxylation of 2-Arylacetic Acid Derivatives and Buspirone Catalyzed by Engineered Cytochrome P450 BM-3. Journal of the American Chemical Society, 2006, 128, 6058-6059.	13.7	141
75	Machine learning-guided channelrhodopsin engineering enables minimally invasive optogenetics. Nature Methods, 2019, 16, 1176-1184.	19.0	141
76	Direct Conversion of Ethane to Ethanol by Engineered Cytochrome P450 BM3. ChemBioChem, 2005, 6, 1765-1768.	2.6	139
77	Library analysis of SCHEMA-guided protein recombination. Protein Science, 2003, 12, 1686-1693.	7.6	138
78	Engineering enzymes for non-aqueous solvents. Trends in Biotechnology, 1990, 8, 244-249.	9.3	137
79	Preparation of human metabolites of propranolol using laboratory-evolved bacterial cytochromes P450. Biotechnology and Bioengineering, 2006, 93, 494-499.	3.3	137
80	Temperature adaptation of enzymes: Lessons from laboratory evolution. Advances in Protein Chemistry, 2001, 55, 161-225.	4.4	136
81	General Method for Sequence-independent Site-directed Chimeragenesis. Journal of Molecular Biology, 2003, 330, 287-296.	4.2	135
82	Functional expression and stabilization of horseradish peroxidase by directed evolution inSaccharomyces cerevisiae. Biotechnology and Bioengineering, 2001, 76, 99-107.	3.3	133
83	Structure-Guided Recombination Creates an Artificial Family of Cytochromes P450. PLoS Biology, 2006, 4, e112.	5.6	133
84	Molecularly imprinted ligand-exchange adsorbents for the chiral separation of underivatized amino acids. Journal of Chromatography A, 1997, 775, 51-63.	3.7	132
85	A glucose-sensing polymer. Nature Biotechnology, 1997, 15, 354-357.	17.5	128
86	A Panel of Cytochrome P450 BM3 Variants to Produce Drug Metabolites and Diversify Lead Compounds. Chemistry - A European Journal, 2009, 15, 11723-11729.	3.3	128
87	Expanding P450 catalytic reaction space through evolution and engineering. Current Opinion in Chemical Biology, 2014, 19, 126-134.	6.1	127
88	Directed evolution of the tryptophan synthase β-subunit for stand-alone function recapitulates allosteric activation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14599-14604.	7.1	127
89	Multiple-site binding interactions in metal-affinity chromatography. Journal of Chromatography A, 1994, 662, 13-26.	3.7	126
90	Template-mediated synthesis of metal-complexing polymers for molecular recognition. Journal of the American Chemical Society, 1991, 113, 7417-7418.	13.7	125

#	Article	IF	CITATIONS
91	Chemo-enzymatic fluorination of unactivated organic compounds. Nature Chemical Biology, 2009, 5, 26-28.	8.0	125
92	Chemomimetic Biocatalysis: Exploiting the Synthetic Potential of Cofactor-Dependent Enzymes To Create New Catalysts. Journal of the American Chemical Society, 2015, 137, 13992-14006.	13.7	125
93	Archaerhodopsin variants with enhanced voltage-sensitive fluorescence in mammalian and Caenorhabditis elegans neurons. Nature Communications, 2014, 5, 4894.	12.8	124
94	Enantioselective Epoxidation of Terminal Alkenes to (R)- and (S)-Epoxides by Engineered Cytochromes P450 BM-3. Chemistry - A European Journal, 2006, 12, 1216-1220.	3.3	121
95	A General Tool for Engineering the NAD/NADP Cofactor Preference of Oxidoreductases. ACS Synthetic Biology, 2017, 6, 326-333.	3.8	120
96	Specific Protein Attachment to Artificial Membranes via Coordination to Lipid-Bound Copper(II). Langmuir, 1994, 10, 2382-2388.	3.5	117
97	Functional expression of horseradish peroxidase in Saccharomyces cerevisiae and Pichia pastoris. Protein Engineering, Design and Selection, 2000, 13, 377-384.	2.1	116
98	Enzymatic Primary Amination of Benzylic and Allylic C(sp ³)–H Bonds. Journal of the American Chemical Society, 2020, 142, 10279-10283.	13.7	116
99	Engineering Cytochrome P450 BM3 for Terminal Alkane Hydroxylation. Advanced Synthesis and Catalysis, 2006, 348, 763-772.	4.3	115
100	Expression and stabilization of galactose oxidase in Escherichia coli by directed evolution. Protein Engineering, Design and Selection, 2001, 14, 699-704.	2.1	114
101	Enantioselective Imidation of Sulfides via Enzyme-Catalyzed Intermolecular Nitrogen-Atom Transfer. Journal of the American Chemical Society, 2014, 136, 8766-8771.	13.7	114
102	Diverse Engineered Heme Proteins Enable Stereodivergent Cyclopropanation of Unactivated Alkenes. ACS Central Science, 2018, 4, 372-377.	11.3	113
103	Molecular imprinting: selective materials for separations, sensors and catalysis. Current Opinion in Biotechnology, 1995, 6, 218-224.	6.6	110
104	Analytical affinity chromatography. Journal of Chromatography A, 1986, 355, 13-27.	3.7	108
105	SCHEMA Recombination of a Fungal Cellulase Uncovers a Single Mutation That Contributes Markedly to Stability. Journal of Biological Chemistry, 2009, 284, 26229-26233.	3.4	108
106	Thermostabilization of a Cytochrome P450 Peroxygenase. ChemBioChem, 2003, 4, 891-893.	2.6	107
107	Isobutanol production at elevated temperatures in thermophilic Geobacillus thermoglucosidasius. Metabolic Engineering, 2014, 24, 1-8.	7.0	107
108	Discovery of a regioselectivity switch in nitrating P450s guided by molecular dynamics simulations and Markov models. Nature Chemistry, 2016, 8, 419-425.	13.6	107

#	Article	IF	CITATIONS
109	Directed evolution: Creating biocatalysts for the future. Chemical Engineering Science, 1996, 51, 5091-5102.	3.8	106
110	Alkene epoxidation catalyzed by cytochrome P450 BM-3 139-3. Tetrahedron, 2004, 60, 525-528.	1.9	106
111	Engineered thermostable fungal Cel6A and Cel7A cellobiohydrolases hydrolyze cellulose efficiently at elevated temperatures. Biotechnology and Bioengineering, 2013, 110, 1874-1883.	3.3	106
112	Alternate Heme Ligation Steers Activity and Selectivity in Engineered Cytochrome P450-Catalyzed Carbene-Transfer Reactions. Journal of the American Chemical Society, 2018, 140, 16402-16407.	13.7	106
113	Selective C H bond functionalization with engineered heme proteins: new tools to generate complexity. Current Opinion in Chemical Biology, 2019, 49, 67-75.	6.1	106
114	Combinatorial protein design: strategies for screening protein libraries. Current Opinion in Structural Biology, 1997, 7, 480-485.	5.7	103
115	Structure-guided SCHEMA recombination of distantly related β-lactamases. Protein Engineering, Design and Selection, 2006, 19, 563-570.	2.1	103
116	General approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NADH. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10946-10951.	7.1	102
117	Combinatorial Alanine Substitution Enables Rapid Optimization of Cytochrome P450 _{BM3} for Selective Hydroxylation of Large Substrates. ChemBioChem, 2010, 11, 2502-2505.	2.6	100
118	Directed Evolution of a Cytochrome P450 Carbene Transferase for Selective Functionalization of Cyclic Compounds. Journal of the American Chemical Society, 2019, 141, 8989-8995.	13.7	99
119	Enantioselective Total Synthesis of Nigelladine A via Late-Stage C–H Oxidation Enabled by an Engineered P450 Enzyme. Journal of the American Chemical Society, 2017, 139, 10196-10199.	13.7	98
120	Modification of Galactose Oxidase to Introduce Glucose 6-Oxidase Activity. ChemBioChem, 2002, 3, 781.	2.6	97
121	Informed training set design enables efficient machine learning-assisted directed protein evolution. Cell Systems, 2021, 12, 1026-1045.e7.	6.2	97
122	Machine learning to design integral membrane channelrhodopsins for efficient eukaryotic expression and plasma membrane localization. PLoS Computational Biology, 2017, 13, e1005786.	3.2	96
123	Stereoselective Enzymatic Synthesis of Heteroatom-Substituted Cyclopropanes. ACS Catalysis, 2018, 8, 2629-2634.	11.2	96
124	On the conservative nature of intragenic recombination. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5380-5385.	7.1	95
125	Catalytic iron-carbene intermediate revealed in a cytochrome <i>c</i> carbene transferase. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7308-7313.	7.1	95
126	Analysis of affinity separations II: The characterization of affinity columns by pulse techniques. The Chemical Engineering Journal, 1985, 30, B25-B36.	0.3	94

#	Article	IF	CITATIONS
127	Enantiodivergent α-Amino C–H Fluoroalkylation Catalyzed by Engineered Cytochrome P450s. Journal of the American Chemical Society, 2019, 141, 9798-9802.	13.7	94
128	Enantioselective Aminohydroxylation of Styrenyl Olefins Catalyzed by an Engineered Hemoprotein. Angewandte Chemie - International Edition, 2019, 58, 3138-3142.	13.8	94
129	Regioselectivity and Activity of Cytochrome P450 BM-3 and Mutant F87A in Reactions Driven by Hydrogen Peroxide. Advanced Synthesis and Catalysis, 2002, 344, 932-937.	4.3	93
130	Efficient screening of fungal cellobiohydrolase class I enzymes for thermostabilizing sequence blocks by SCHEMA structure-guided recombination. Protein Engineering, Design and Selection, 2010, 23, 871-880.	2.1	92
131	Engineering enzymes for noncanonical amino acid synthesis. Chemical Society Reviews, 2018, 47, 8980-8997.	38.1	92
132	Analysis of shuffled gene libraries. Journal of Molecular Biology, 2002, 316, 643-656.	4.2	91
133	Multipoint binding in metal-affinity chromatography II. Effect of pH and imidazole on chromatographic retention of engineered histidine-containing cytochromes c. Journal of Chromatography A, 1996, 725, 225-235.	3.7	90
134	Unlocking Reactivity of TrpB: A General Biocatalytic Platform for Synthesis of Tryptophan Analogues. Journal of the American Chemical Society, 2017, 139, 10769-10776.	13.7	90
135	Chemistry Takes a Bath: Reactions in Aqueous Media. Journal of Organic Chemistry, 2018, 83, 7319-7322.	3.2	90
136	Protein sequence design with deep generative models. Current Opinion in Chemical Biology, 2021, 65, 18-27.	6.1	88
137	Advances in machine learning for directed evolution. Current Opinion in Structural Biology, 2021, 69, 11-18.	5.7	87
138	Directed Evolution of Gloeobacter violaceus Rhodopsin Spectral Properties. Journal of Molecular Biology, 2015, 427, 205-220.	4.2	85
139	Cu(II)-Binding properties of a cytochrome c with a synthetic metal-binding site: His-X3-His in an α-helix. Proteins: Structure, Function and Bioinformatics, 1991, 10, 156-161.	2.6	84
140	Directed evolution of a far-red fluorescent rhodopsin. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13034-13039.	7.1	84
141	Chemoenzymatic elaboration of monosaccharides using engineered cytochrome P450 _{BM3} demethylases. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16550-16555.	7.1	83
142	Laboratory Evolution of Toluene Dioxygenase To Accept 4-Picoline as a Substrate. Applied and Environmental Microbiology, 2001, 67, 3882-3887.	3.1	81
143	The nature of chemical innovation: new enzymes by evolution. Quarterly Reviews of Biophysics, 2015, 48, 404-410.	5.7	81
144	Molecularly imprinted polymers on silica: selective supports for high-performance ligand-exchange chromatography. Journal of Chromatography A, 1995, 708, 19-29.	3.7	80

#	Article	IF	CITATIONS
145	A high-throughput digital imaging screen for the discovery and directed evolution of oxygenases. Chemistry and Biology, 1999, 6, 699-706.	6.0	80
146	Combining chemistry and protein engineering for new-to-nature biocatalysis. , 2022, 1, 18-23.		80
147	Engineering proteins for nonnatural environments. FASEB Journal, 1993, 7, 744-749.	0.5	79
148	Metal-mediated protein stabilization. Trends in Biotechnology, 1994, 12, 189-192.	9.3	79
149	Comparison of random mutagenesis and semi-rational designed libraries for improved cytochrome P450 BM3-catalyzed hydroxylation of small alkanes. Protein Engineering, Design and Selection, 2012, 25, 171-178.	2.1	79
150	Nature's Machinery, Repurposed: Expanding the Repertoire of Iron-Dependent Oxygenases. ACS Catalysis, 2020, 10, 12239-12255.	11.2	78
151	In Vivo Evolution of Butane Oxidation by Terminal Alkane Hydroxylases AlkB and CYP153A6. Applied and Environmental Microbiology, 2009, 75, 337-344.	3.1	77
152	A Biocatalytic Platform for Synthesis of Chiral <i>α-</i> Trifluoromethylated Organoborons. ACS Central Science, 2019, 5, 270-276.	11.3	77
153	Gerichtete Evolution: Wie man neue Chemie zum Leben erweckt. Angewandte Chemie, 2018, 130, 4212-4218.	2.0	74
154	Analytical affinity chromatography. Journal of Chromatography A, 1986, 355, 1-12.	3.7	73
155	Consensus Protein Design without Phylogenetic Bias. Journal of Molecular Biology, 2010, 399, 541-546.	4.2	73
156	Synthesis of β-Branched Tryptophan Analogues Using an Engineered Subunit of Tryptophan Synthase. Journal of the American Chemical Society, 2016, 138, 8388-8391.	13.7	73
157	Directed Evolution Mimics Allosteric Activation by Stepwise Tuning of the Conformational Ensemble. Journal of the American Chemical Society, 2018, 140, 7256-7266.	13.7	73
158	Tryptophan Phosphorescence Study of Enzyme Flexibility and Unfolding in Laboratory-Evolved Thermostable Esterasesâ€. Biochemistry, 2000, 39, 4658-4665.	2.5	70
159	Site-directed protein recombination as a shortest-path problem. Protein Engineering, Design and Selection, 2004, 17, 589-594.	2.1	70
160	Asymmetric Enzymatic Synthesis of Allylic Amines: A Sigmatropic Rearrangement Strategy. Angewandte Chemie - International Edition, 2016, 55, 4711-4715.	13.8	70
161	Structure, dynamics, and thermodynamics of mismatched DNA oligonucleotide duplexes d(CCCAGGG)2 and d(CCCTGGG)2. Biochemistry, 1987, 26, 4068-4075.	2.5	69
162	Protein Stabilization by Engineered Metal Chelation. Bio/technology, 1991, 9, 994-995.	1.5	69

#	Article	IF	CITATIONS
163	Functional Expression of Horseradish Peroxidase in E. coli by Directed Evolution. Biotechnology Progress, 1999, 15, 467-471.	2.6	68
164	A Colorimetric Assay to Quantify Dehydrogenase Activity in Crude Cell Lysates. Journal of Biomolecular Screening, 2002, 7, 135-140.	2.6	68
165	Highly Stereoselective Biocatalytic Synthesis of Key Cyclopropane Intermediate to Ticagrelor. ACS Catalysis, 2016, 6, 7810-7813.	11.2	66
166	Characterization of His-X3-His sites in α-helices of synthetic metal-binding bovine somatotropin. Protein Engineering, Design and Selection, 1991, 4, 301-305.	2.1	65
167	Review: Multipoint binding and heterogeneity in immobilized metal affinity chromatography. Biotechnology and Bioengineering, 1995, 48, 437-443.	3.3	65
168	When blind is better: Protein design by evolution. Nature Biotechnology, 1998, 16, 617-618.	17.5	64
169	Colorimetric Assays for Biodegradation of Polycyclic Aromatic Hydrocarbons by Fungal Laccases. Journal of Biomolecular Screening, 2002, 7, 547-553.	2.6	64
170	Diversification of Catalytic Function in a Synthetic Family of Chimeric Cytochrome P450s. Chemistry and Biology, 2007, 14, 269-278.	6.0	63
171	Engineering Cytochrome P450s for Enantioselective Cyclopropenation of Internal Alkynes. Journal of the American Chemical Society, 2020, 142, 6891-6895.	13.7	63
172	Signal Peptides Generated by Attention-Based Neural Networks. ACS Synthetic Biology, 2020, 9, 2154-2161.	3.8	63
173	A mathematical model for metal affinity protein partitioning. Biotechnology and Bioengineering, 1990, 35, 682-690.	3.3	62
174	A Metal-Chelating Lipid for 2D Protein Crystallization via Coordination of Surface Histidines. Journal of the American Chemical Society, 1997, 119, 2479-2487.	13.7	61
175	Scalable continuous evolution for the generation of diverse enzyme variants encompassing promiscuous activities. Nature Communications, 2020, 11, 5644.	12.8	61
176	Engineering Protein-Lipid Interactions: Targeting of Histidine-Tagged Proteins to Metal-Chelating Lipid Monolayers. Langmuir, 1995, 11, 4048-4055.	3.5	59
177	Highly thermostable fungal cellobiohydrolase I (Cel7A) engineered using predictive methods. Protein Engineering, Design and Selection, 2012, 25, 827-833.	2.1	59
178	P450-catalyzed asymmetric cyclopropanation of electron-deficient olefins under aerobic conditions. Catalysis Science and Technology, 2014, 4, 3640-3643.	4.1	59
179	A Panel of TrpB Biocatalysts Derived from Tryptophan Synthase through the Transfer of Mutations that Mimic Allosteric Activation. Angewandte Chemie - International Edition, 2016, 55, 11577-11581.	13.8	59
180	Enzyme engineering for nonaqueous solvents. II. Additive effects of mutations on the stability and activity of subtilisin E in polar organic media. Biotechnology Progress, 1991, 7, 125-129.	2.6	58

#	Article	IF	CITATIONS
181	Synthetic Bis-Metal Ion Receptors for Bis-Imidazole "Protein Analogs". Journal of the American Chemical Society, 1994, 116, 8902-8911.	13.7	58
182	Identification of Mechanism-Based Inactivation in P450-Catalyzed Cyclopropanation Facilitates Engineering of Improved Enzymes. Journal of the American Chemical Society, 2016, 138, 12527-12533.	13.7	58
183	New-to-nature chemistry from old protein machinery: carbene and nitrene transferases. Current Opinion in Biotechnology, 2021, 69, 43-51.	6.6	57
184	Stereoselective hydroxylation of an achiral cyclopentanecarboxylic acid derivative using engineered P450s BM-3. Chemical Communications, 2005, , 2597.	4.1	56
185	Catalysts on Demand: Selective Oxidations by Laboratory-Evolved Cytochrome P450 BM3. Chimia, 2009, 63, 309.	0.6	56
186	Genetically Encoded Spy Peptide Fusion System to Detect Plasma Membrane-Localized Proteins InÂVivo. Chemistry and Biology, 2015, 22, 1108-1121.	6.0	56
187	Directed Evolution of a Bright Near-Infrared Fluorescent Rhodopsin Using a Synthetic Chromophore. Cell Chemical Biology, 2017, 24, 415-425.	5.2	55
188	Improved Synthesis of 4-Cyanotryptophan and Other Tryptophan Analogues in Aqueous Solvent Using Variants of TrpB from <i>Thermotoga maritima</i> . Journal of Organic Chemistry, 2018, 83, 7447-7452.	3.2	54
189	Protein design for non-aqueous solvents. Protein Engineering, Design and Selection, 1988, 2, 21-25.	2.1	53
190	Surface charge substitutions increase the stability of .alphalytic protease in organic solvents. Journal of the American Chemical Society, 1991, 113, 6336-6337.	13.7	53
191	Colorimetric High-Throughput Assay for Alkene Epoxidation Catalyzed by Cytochrome P450 BM-3 Variant 139-3. Journal of Biomolecular Screening, 2004, 9, 141-146.	2.6	53
192	Engineered Biosynthesis of βâ€Alkyl Tryptophan Analogues. Angewandte Chemie - International Edition, 2018, 57, 14764-14768.	13.8	53
193	Site-selective enzymatic C‒H amidation for synthesis of diverse lactams. Science, 2019, 364, 575-578.	12.6	53
194	Directed Evolution of <i>Vibrio fischeri</i> LuxR for Improved Response to Butanoyl-Homoserine Lactone. Applied and Environmental Microbiology, 2007, 73, 5775-5781.	3.1	52
195	SCHEMA-Designed Variants of Human Arginase I and II Reveal Sequence Elements Important to Stability and Catalysis. ACS Synthetic Biology, 2012, 1, 221-228.	3.8	52
196	Recent advances in engineering microbial rhodopsins for optogenetics. Current Opinion in Structural Biology, 2015, 33, 8-15.	5.7	52
197	Structure-guided SCHEMA recombination generates diverse chimeric channelrhodopsins. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2624-E2633.	7.1	51
198	Patterns of adaptation in a laboratory evolved thermophilic enzyme. BBA - Proteins and Proteomics, 2001, 1549, 1-8.	2.1	50

#	Article	IF	CITATIONS
199	Improved productâ€perâ€glucose yields in P450â€dependent propane biotransformations using engineered <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2011, 108, 500-510.	3.3	49
200	Engineered thermostable fungal cellulases exhibit efficient synergistic cellulose hydrolysis at elevated temperatures. Biotechnology and Bioengineering, 2014, 111, 2390-2397.	3.3	49
201	Enhancement of cellulosome-mediated deconstruction of cellulose by improving enzyme thermostability. Biotechnology for Biofuels, 2016, 9, 164.	6.2	49
202	Selective Enzymatic Oxidation of Silanes to Silanols. Angewandte Chemie - International Edition, 2020, 59, 15507-15511.	13.8	48
203	Dual-function enzyme catalysis for enantioselective carbon–nitrogen bond formation. Nature Chemistry, 2021, 13, 1166-1172.	13.6	48
204	Combinatorial protein design by in vitro recombination. Current Opinion in Chemical Biology, 1998, 2, 335-338.	6.1	47
205	Tryptophan Synthase: Biocatalyst Extraordinaire. ChemBioChem, 2021, 22, 5-16.	2.6	47
206	Protein engineering for unusual environments. Current Opinion in Biotechnology, 1993, 4, 450-455.	6.6	46
207	Utilizing Terminal Oxidants to Achieve P450â€Catalyzed Oxidation of Methane. Advanced Synthesis and Catalysis, 2012, 354, 964-968.	4.3	46
208	Tailoring Tryptophan Synthase TrpB for Selective Quaternary Carbon Bond Formation. Journal of the American Chemical Society, 2019, 141, 19817-19822.	13.7	46
209	Optimizing industrial enzymes by directed evolution. Advances in Biochemical Engineering/Biotechnology, 1997, 58, 1-14.	1.1	45
210	Cost-Effective Whole-Cell Assay for Laboratory Evolution of Hydroxylases in Escherichia coli. Journal of Biomolecular Screening, 2001, 6, 111-117.	2.6	45
211	Nonâ€natural Olefin Cyclopropanation Catalyzed by Diverse Cytochrome P450s and Other Hemoproteins. ChemBioChem, 2014, 15, 2556-2562.	2.6	45
212	Nitrene Transfer Catalyzed by a Non-Heme Iron Enzyme and Enhanced by Non-Native Small-Molecule Ligands. Journal of the American Chemical Society, 2019, 141, 19585-19588.	13.7	44
213	Diversity-Oriented Enzymatic Synthesis of Cyclopropane Building Blocks. ACS Catalysis, 2020, 10, 7112-7116.	11.2	43
214	Engineering by homologous recombination: exploring sequence and function within a conserved fold. Current Opinion in Structural Biology, 2007, 17, 454-459.	5.7	41
215	Engineering explored. Nature, 2014, 509, 166-167.	27.8	41
216	An Enzymatic Platform for Primary Amination of 1-Aryl-2-alkyl Alkynes. Journal of the American Chemical Society, 2022, 144, 80-85.	13.7	41

#	Article	IF	CITATIONS
217	Fluorescence signaling of ligand binding and assembly in metal-chelating lipid membranes. Chemistry and Biology, 1996, 3, 185-192.	6.0	40
218	A membrane-moderated, conductimetric sensor for the detection and measurement of specific organic solutes in aqueous solutions. Journal of Membrane Science, 2000, 167, 227-239.	8.2	40
219	Structure-Guided Directed Evolution of Highly Selective P450-Based Magnetic Resonance Imaging Sensors for Dopamine and Serotonin. Journal of Molecular Biology, 2012, 422, 245-262.	4.2	40
220	Structural, Functional, and Spectroscopic Characterization of the Substrate Scope of the Novel Nitrating Cytochrome P450 TxtE. ChemBioChem, 2014, 15, 2259-2267.	2.6	40
221	Engineering Chemoselectivity in Hemoprotein-Catalyzed Indole Amidation. ACS Catalysis, 2019, 9, 8271-8275.	11.2	39
222	Biocatalytic, Intermolecular Câ^'H Bond Functionalization for the Synthesis of Enantioenriched Amides. Angewandte Chemie - International Edition, 2021, 60, 24864-24869.	13.8	39
223	In vivo hypermutation and continuous evolution. Nature Reviews Methods Primers, 2022, 2, .	21.2	39
224	A diverse set of familyÂ48 bacterial glycoside hydrolase cellulases created by structureâ€guided recombination. FEBS Journal, 2012, 279, 4453-4465.	4.7	38
225	Enzymatic Lactone-Carbene C–H Insertion to Build Contiguous Chiral Centers. ACS Catalysis, 2020, 10, 5393-5398.	11.2	38
226	Ruthenium-mediated protein cross-linking and stabilization. Journal of the American Chemical Society, 1993, 115, 5312-5313.	13.7	37
227	A Self-Sufficient Peroxide-Driven Hydroxylation Biocatalyst. Angewandte Chemie, 2003, 115, 3421-3423.	2.0	37
228	Stabilization of substilisin E in organic solvents by site-directed mutagenesis. Biotechnology and Bioengineering, 1992, 39, 141-147.	3.3	36
229	Surface Grafting of Functional Polymers to Macroporous Poly(trimethylolpropane trimethacrylate). Chemistry of Materials, 1995, 7, 154-162.	6.7	36
230	Engineered Bacterial Mimics of Human Drug Metabolizing Enzyme CYP2C9. ChemCatChem, 2011, 3, 1065-1071.	3.7	36
231	P450 _{BM3} â€Axial Mutations: A Gateway to Nonâ€Natural Reactivity. Israel Journal of Chemistry, 2015, 55, 14-20.	2.3	36
232	Biocatalytic One-Carbon Ring Expansion of Aziridines to Azetidines via a Highly Enantioselective [1,2]-Stevens Rearrangement. Journal of the American Chemical Society, 2022, 144, 4739-4745.	13.7	35
233	Exploring the Mechanism Responsible for Cellulase Thermostability by Structure-Guided Recombination. PLoS ONE, 2016, 11, e0147485.	2.5	32
234	SCHEMA-Guided Protein Recombination. Methods in Enzymology, 2004, 388, 35-42.	1.0	31

#	Article	IF	CITATIONS
235	Chimeragenesis of distantlyâ€related proteins by noncontiguous recombination. Protein Science, 2013, 22, 231-238.	7.6	31
236	Innovation by homologous recombination. Current Opinion in Chemical Biology, 2013, 17, 902-909.	6.1	31
237	Structural Adaptability Facilitates Histidine Heme Ligation in a Cytochrome P450. Journal of the American Chemical Society, 2015, 137, 13861-13865.	13.7	31
238	Nitroalkanes as Versatile Nucleophiles for Enzymatic Synthesis of Noncanonical Amino Acids. ACS Catalysis, 2019, 9, 8726-8730.	11.2	31
239	Langmuir monolayer characterization of metal chelating lipids for protein targeting to membranes. Chemistry and Physics of Lipids, 1997, 86, 135-152.	3.2	29
240	Directed Evolution of Mesophilic Enzymes into Their Thermophilic Counterparts. Annals of the New York Academy of Sciences, 1999, 870, 400-403.	3.8	29
241	Computationally focusing the directed evolution of proteins. Journal of Cellular Biochemistry, 2001, 84, 58-63.	2.6	29
242	Biocatalytic Transformations of Silicon—the Other Group 14 Element. ACS Central Science, 2021, 7, 944-953.	11.3	28
243	A Versatile High Throughput Screen for Dioxygenase Activity Using Solid-Phase Digital Imaging. Journal of Biomolecular Screening, 2001, 6, 219-223.	2.6	27
244	Origin and Control of Chemoselectivity in Cytochrome <i>c</i> Catalyzed Carbene Transfer into Si–H and N–H bonds. Journal of the American Chemical Society, 2021, 143, 7114-7123.	13.7	27
245	Selective recognition of bis-imidazoles by complementary bis-metal ion complexes. Journal of the American Chemical Society, 1993, 115, 2518-2520.	13.7	26
246	Strategy for the Directed Evolution of a Peptide Ligase. Annals of the New York Academy of Sciences, 1996, 799, 1-5.	3.8	26
247	EVOLUTIONARY DESIGN OF GENETIC CIRCUITS AND CELL-CELL COMMUNICATIONS. International Journal of Modeling, Simulation, and Scientific Computing, 2003, 06, 37-45.	1.4	26
248	Metal affinity extraction of human hemoglobin in an aqueous polyethylene glycol-sodium sulfate two-phase system. Biotechnology Letters, 1990, 4, 45-48.	0.5	24
249	Innovation durch Evolution: Wie man neue Chemie zum Leben erweckt (Nobelâ€Vortrag). Angewandte Chemie, 2019, 131, 14558-14565.	2.0	24
250	A Dual Selection Module for Directed Evolution of Genetic Circuits. Natural Computing, 2005, 4, 245-254.	3.0	23
251	Asymmetric Enzymatic Synthesis of Allylic Amines: A Sigmatropic Rearrangement Strategy. Angewandte Chemie, 2016, 128, 4789-4793.	2.0	23
252	Review: Selective ligand-exchange adsorbents prepared by template polymerization. Biotechnology and Bioengineering, 1995, 48, 431-436.	3.3	22

#	Article	IF	CITATIONS
253	Enantioselective Aminohydroxylation of Styrenyl Olefins Catalyzed by an Engineered Hemoprotein. Angewandte Chemie, 2019, 131, 3170-3174.	2.0	22
254	Engineered Cytochrome c-Catalyzed Lactone-Carbene B–H Insertion. Synlett, 2019, 30, 378-382.	1.8	22
255	Metallâ€induzierte Dispersion von Lipidâ€Aggregaten; ein einfacher, selektiver und empfindlicher Fluoreszenzsensor fÃ1⁄4r Metallâ€ionen. Angewandte Chemie, 1995, 107, 994-996.	2.0	21
256	Cofactor specificity motifs and the induced fit mechanism in class I ketol-acid reductoisomerases. Biochemical Journal, 2015, 468, 475-484.	3.7	21
257	Biocatalytic Carbene Transfer Using Diazirines. Journal of the American Chemical Society, 2022, 144, 8892-8896.	13.7	21
258	<i>Hypocrea jecorina</i> Cellobiohydrolase I Stabilizing Mutations Identified Using Noncontiguous Recombination. ACS Synthetic Biology, 2013, 2, 690-696.	3.8	20
259	Tryptophan Synthase Uses an Atypical Mechanism To Achieve Substrate Specificity. Biochemistry, 2016, 55, 7043-7046.	2.5	20
260	Direct Enzymatic Synthesis of a Deepâ€Blue Fluorescent Noncanonical Amino Acid from Azulene and Serine. ChemBioChem, 2020, 21, 80-83.	2.6	20
261	Chiral copper—chelate complexes alter selectivities in metal affinity protein partitioning. Journal of Chromatography A, 1991, 543, 345-354.	3.7	19
262	evSeq: Cost-Effective Amplicon Sequencing of Every Variant in a Protein Library. ACS Synthetic Biology, 2022, 11, 1313-1324.	3.8	19
263	Metal-affinity partitioning of phosphoproteins in PEC/dextran two-phase systems. Biotechnology Letters, 1991, 13, 615-620.	2.2	18
264	Efficient Sampling of SCHEMA Chimera Families to Identify Useful Sequence Elements. Methods in Enzymology, 2013, 523, 351-368.	1.0	18
265	High Throughput Screening with SAMDI Mass Spectrometry for Directed Evolution. Journal of the American Chemical Society, 2020, 142, 19804-19808.	13.7	17
266	Random mutagenesis to enhance the activity of subtilisin in organic solvents: Characterization of Q103R subtilisin E. Biotechnology and Bioengineering, 1992, 39, 658-662.	3.3	16
267	Staggered Extension Process (StEP) In Vitro Recombination. , 2002, 192, 235-239.		16
268	Engineered Biosynthesis of βâ€Alkyl Tryptophan Analogues. Angewandte Chemie, 2018, 130, 14980-14984.	2.0	16
269	A Panel of TrpB Biocatalysts Derived from Tryptophan Synthase through the Transfer of Mutations that Mimic Allosteric Activation. Angewandte Chemie, 2016, 128, 11749-11753.	2.0	14
270	Ligand-induced reorganization and assembly in synthetic lipid membranes. Supramolecular Science, 1997, 4, 3-10.	0.7	13

Frances H Arnold

#	Article	IF	CITATIONS
271	Designing Libraries of Chimeric Proteins Using SCHEMA Recombination and RASPP. Methods in Molecular Biology, 2014, 1179, 335-343.	0.9	13
272	[15] Metal affinity partitioning. Methods in Enzymology, 1994, 228, 167-179.	1.0	12
273	Binding and two-dimensional crystallization of streptavidin at the air/water interface via engineered Cu-IDA chelator lipids. Coordination Chemistry Reviews, 1999, 183, 3-18.	18.8	12
274	Chiral Ligand Exchange Adsorbents for Amines and Underivatized Amino Acids: 'Bait-and-Switch' Molecular Imprinting. ACS Symposium Series, 1998, , 109-118.	0.5	11
275	Asymmetric Alkylation of Ketones Catalyzed by Engineered TrpB. Angewandte Chemie - International Edition, 2021, 60, 21412-21417.	13.8	11
276	Random Field Model Reveals Structure of the Protein Recombinational Landscape. PLoS Computational Biology, 2012, 8, e1002713.	3.2	10
277	"ltching―for new strategies in protein engineering. Nature Biotechnology, 1999, 17, 1159-1160.	17.5	9
278	Selective Enzymatic Oxidation of Silanes to Silanols. Angewandte Chemie, 2020, 132, 15637-15641.	2.0	9
279	Enzyme Stabilization by Directed Evolution. , 2000, 22, 55-76.		9
280	Response to Goldman and Brown: Making sense of microbial consortia using ecology and evolution. Trends in Biotechnology, 2009, 27, 4.	9.3	8
281	Enzyme Nicotinamide Cofactor Specificity Reversal Guided by Automated Structural Analysis and Library Design. Methods in Molecular Biology, 2018, 1671, 15-26.	0.9	5
282	The Library of Maynard-Smith: My Search for Meaning in the Protein Universe. Microbe Magazine, 2011, 6, 316-318.	0.4	5
283	Engineering Nonaqueous Solvent-Compatible Enzymes. ACS Symposium Series, 1993, , 109-113.	0.5	4
284	Recombinant Protein Stabilization through Engineered Metal-Chelating Sites. ACS Symposium Series, 1993, , 102-108.	0.5	4
285	Artificial domain duplication replicates evolutionary history of ketolâ€acid reductoisomerases. Protein Science, 2016, 25, 1241-1248.	7.6	4
286	Noncontiguous SCHEMA Protein Recombination. Methods in Molecular Biology, 2014, 1179, 345-352.	0.9	4
287	Nuclear magnetic relaxation study of hindered rotational diffusion in gels. AICHE Journal, 1989, 35, 335-338.	3.6	3
288	Asymmetric Alkylation of Ketones Catalyzed by Engineered TrpB. Angewandte Chemie, 2021, 133, 21582-21587.	2.0	2

#	Article	IF	CITATIONS
289	Biocatalytic, Intermolecular Câ€H Bond Functionalization for the Synthesis of Enantioenriched Amides. Angewandte Chemie, 0, , .	2.0	2
290	NMR Studies of Crambin Structure and Unfolding in Nonaqueous Solvents. Annals of the New York Academy of Sciences, 1988, 542, 30-36.	3.8	1
291	Exploring the Diversity of Heme Enzymes through Directed Evolution. , 0, , 215-243.		1
292	Enzymes by Evolution: Bringing New Chemistry to Life. , 2019, , 47-67.		1
293	EXPANDING THE ENZYME UNIVERSE THROUGH A MARRIAGE OF CHEMISTRY AND EVOLUTION. , 2014, , .		0
294	Innentitelbild: Gerichtete Evolution: Wie man neue Chemie zum Leben erweckt (Angew. Chem. 16/2018). Angewandte Chemie, 2018, 130, 4172-4172.	2.0	0
295	Metal Affinity Partitioning of Phosphoproteins in Aqueous Two-Phase Systems. , 1992, , 557-559.		0