Ralf Janssen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4323525/publications.pdf Version: 2024-02-01

PALE LANSSEN

#	Article	IF	CITATIONS
1	Expression of <i>netrin</i> and its receptors <i>uncoordinatedâ€5</i> and <i>frazzled</i> in arthropods and onychophorans suggests conserved and diverged functions in neuronal pathfinding and synaptogenesis. Developmental Dynamics, 2023, 252, 172-185.	0.8	3
2	Lack of evidence for conserved parasegmental grooves in arthropods. Development Genes and Evolution, 2022, 232, 27-37.	0.4	2
3	Phylogenetic analysis of forkhead transcription factors in the Panarthropoda. Development Genes and Evolution, 2022, 232, 39-48.	0.4	4
4	Embryonic expression patterns of Wnt genes in the RTA-clade spider Cupiennius salei. Gene Expression Patterns, 2022, 44, 119247.	0.3	1
5	A comprehensive study of arthropod and onychophoran Fox gene expression patterns. PLoS ONE, 2022, 17, e0270790.	1.1	3
6	Oscillating waves of Fox, Cyclin and CDK gene expression indicate unique spatiotemporal control of cell cycling during nervous system development in onychophorans. Arthropod Structure and Development, 2021, 62, 101042.	0.8	3
7	Panarthropod tiptop/teashirt and spalt orthologs and their potential role as "trunk―selector genes. EvoDevo, 2021, 12, 7.	1.3	1
8	Molecular evidence for a single origin of ultrafiltration-based excretory organs. Current Biology, 2021, 31, 3629-3638.e2.	1.8	28
9	Widespread retention of ohnologs in key developmental gene families following whole-genome duplication in arachnopulmonates. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	21
10	A chelicerate Wnt gene expression atlas: novel insights into the complexity of arthropod Wnt-patterning. EvoDevo, 2021, 12, 12.	1.3	16
11	The embryonic expression pattern of a second, hitherto unrecognized, paralog of the pair-rule gene sloppy-paired in the beetle Tribolium castaneum. Development Genes and Evolution, 2020, 230, 247-256.	0.4	2
12	The forkhead box containing transcription factor FoxB is a potential component of dorsal-ventral body axis formation in the spider Parasteatoda tepidariorum. Development Genes and Evolution, 2020, 230, 65-73.	0.4	3
13	Expression of the zinc finger transcription factor Sp6–9 in the velvet worm Euperipatoides kanangrensis suggests a conserved role in appendage development in Panarthropoda. Development Genes and Evolution, 2020, 230, 239-245.	0.4	1
14	Embryonic expression of priapulid Wnt genes. Development Genes and Evolution, 2019, 229, 125-135.	0.4	14
15	Phylogenetic analysis and embryonic expression of panarthropod Dmrt genes. Frontiers in Zoology, 2019, 16, 23.	0.9	33
16	FoxB, a new and highly conserved key factor in arthropod dorsal–ventral (DV) limb patterning. EvoDevo, 2019, 10, 28.	1.3	10
17	The last common ancestor of Ecdysozoa had an adult terminal mouth. Arthropod Structure and Development, 2019, 49, 155-158.	0.8	5
18	Gene expression analysis of potential morphogen signalling modifying factors in Panarthropoda. EvoDevo, 2018, 9, 20.	1.3	4

RALF JANSSEN

#	Article	IF	CITATIONS
19	Embryonic expression patterns and phylogenetic analysis of panarthropod sox genes: insight into nervous system development, segmentation and gonadogenesis. BMC Evolutionary Biology, 2018, 18, 88.	3.2	45
20	Embryonic expression of a Long Toll (Loto) gene in the onychophorans Euperipatoides kanangrensis and Cephalofovea clandestina. Development Genes and Evolution, 2018, 228, 171-178.	0.4	2
21	Comparative analysis of gene expression patterns in the arthropod labrum and the onychophoran frontal appendages, and its implications for the arthropod head problem. EvoDevo, 2017, 8, 1.	1.3	28
22	A molecular view of onychophoran segmentation. Arthropod Structure and Development, 2017, 46, 341-353.	0.8	21
23	Investigation of endoderm marker-genes during gastrulation and gut-development in the velvet worm Euperipatoides kanangrensis. Developmental Biology, 2017, 427, 155-164.	0.9	8
24	Gene expression reveals evidence for EGFR-dependent proximal-distal limb patterning in a myriapod. Evolution & Development, 2017, 19, 124-135.	1.1	6
25	Origin and evolution of the panarthropod head – A palaeobiological and developmental perspective. Arthropod Structure and Development, 2017, 46, 354-379.	0.8	75
26	The house spider genome reveals an ancient whole-genome duplication during arachnid evolution. BMC Biology, 2017, 15, 62.	1.7	286
27	Gene expression analysis reveals that Delta/Notch signalling is not involved in onychophoran segmentation. Development Genes and Evolution, 2016, 226, 69-77.	0.4	15
28	The evolution and expression of panarthropod frizzled genes. Frontiers in Ecology and Evolution, 2015, 3, .	1.1	20
29	Aspects of dorsoâ€ventral and proximoâ€distal limb patterning in onychophorans. Evolution & Development, 2015, 17, 21-33.	1.1	20
30	Fate and nature of the onychophoran mouth–anus furrow and its contribution to the blastopore. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142628.	1.2	17
31	Gene expression suggests double-segmental and single-segmental patterning mechanisms during posterior segment addition in the beetle Tribolium castaneum. International Journal of Developmental Biology, 2014, 58, 343-347.	0.3	9
32	Expression of arthropod distal limb-patterning genes in the onychophoran Euperipatoides kanangrensis. Development Genes and Evolution, 2014, 224, 87-96.	0.4	16
33	Analysis of the Wnt gene repertoire in an onychophoran provides new insights into the evolution of segmentation. EvoDevo, 2014, 5, 14.	1.3	41
34	Identification and embryonic expression of Wnt2, Wnt4, Wnt5 and Wnt9 in the millipede Glomeris marginata (Myriapoda: Diplopoda). Gene Expression Patterns, 2014, 14, 55-61.	0.3	32
35	Onychophoran Hox genes and the evolution of arthropod Hox gene expression. Frontiers in Zoology, 2014, 11, 22.	0.9	61
36	Developmental abnormalities in Glomeris marginata (Villers 1789) (Myriapoda: Diplopoda): implications for body axis determination in a myriapod. Die Naturwissenschaften, 2013, 100, 33-43.	0.6	17

RALF JANSSEN

#	Article	IF	CITATIONS
37	Deciphering the onychophoran â€~segmentation gene cascade': Gene expression reveals limited involvement of pair rule gene orthologs in segmentation, but a highly conserved segment polarity gene network. Developmental Biology, 2013, 382, 224-234.	0.9	68
38	A curious abnormally developed embryo of the pill millipede Glomeris marginata (Villers, 1789). ZooKeys, 2013, 276, 67-75.	0.5	2
39	Segment polarity gene expression in a myriapod reveals conserved and diverged aspects of early head patterning in arthropods. Development Genes and Evolution, 2012, 222, 299-309.	0.4	27
40	Expression of pair rule gene orthologs in the blastoderm of a myriapod: evidence for pair rule-like mechanisms?. BMC Developmental Biology, 2012, 12, 15.	2.1	23
41	Deuterostomic Development in the Protostome Priapulus caudatus. Current Biology, 2012, 22, 2161-2166.	1.8	73
42	Expression of myriapod pair rule gene orthologs. EvoDevo, 2011, 2, 5.	1.3	42
43	Diplosegmentation in the pill millipede <i><scp>G</scp>lomeris marginata</i> i>is the result of dorsal fusion. Evolution & Development, 2011, 13, 477-487.	1.1	24
44	Gene expression suggests conserved mechanisms patterning the heads of insects and myriapods. Developmental Biology, 2011, 357, 64-72.	0.9	37
45	An abnormally developed embryo of the pill millipede Glomeris marginata that lacks dorsal segmental derivatives. Development Genes and Evolution, 2011, 221, 351-355.	0.4	4
46	Expression of collier in the premandibular segment of myriapods: support for the traditional Atelocerata concept or a case of convergence?. BMC Evolutionary Biology, 2011, 11, 50.	3.2	24
47	Conservation, loss, and redeployment of Wnt ligands in protostomes: implications for understanding the evolution of segment formation. BMC Evolutionary Biology, 2010, 10, 374.	3.2	153
48	Head patterning and Hox gene expression in an onychophoran and its implications for the arthropod head problem. Development Genes and Evolution, 2010, 220, 117-122.	0.4	69
49	Gene expression patterns in an onychophoran reveal that regionalization predates limb segmentation in panâ€∎rthropods. Evolution & Development, 2010, 12, 363-372.	1.1	61
50	Gene expression suggests conserved aspects of Hox gene regulation in arthropods and provides additional support for monophyletic Myriapoda. EvoDevo, 2010, 1, 4.	1.3	20
51	The hatching larva of the priapulid worm Halicryptus spinulosus. Frontiers in Zoology, 2009, 6, 8.	0.9	15
52	Hatching and earliest larval stages of the priapulid worm <i>Priapulus caudatus</i> . Invertebrate Biology, 2009, 128, 157-171.	0.3	27
53	Evidence for Wg-independent tergite boundary formation in the millipede Glomeris marginata. Development Genes and Evolution, 2008, 218, 361-370.	0.4	44
54	The Tâ€box genes <i>H15</i> and <i>optomotorâ€blind</i> in the spiders <i>Cupiennius salei</i> , <i>Tegenaria atrica</i> and <i>Achaearanea tepidariorum</i> and the dorsoventral axis of arthropod appendages. Evolution & Development, 2008, 10, 143-154.	1,1	23

Ralf Janssen

#	Article	IF	CITATIONS
55	Diverged and conserved aspects of heart formation in a spider. Evolution & Development, 2008, 10, 155-165.	1.1	30
56	Early embryonic development of the priapulid worm <i>Priapulus caudatus</i> . Evolution & Development, 2008, 10, 326-338.	1.1	50
57	A review of the correlation of tergites, sternites, and leg pairs in diplopods. Frontiers in Zoology, 2006, 3, 2.	0.9	27
58	The ten Hox genes of the millipede Glomeris marginata. Development Genes and Evolution, 2006, 216, 451-465.	0.4	54
59	Evolution of dorsal-ventral axis formation in arthropod appendages: H15 and optomotor-blind/bifid-type T-box genes in the millipede Clomeris marginata (Myriapoda: Diplopoda). Evolution & Development, 2005, 7, 51-57.	1.1	32
60	Pair rule gene orthologs in spider segmentation. Evolution & Development, 2005, 7, 618-628.	1.1	75
61	Gene expression suggests decoupled dorsal and ventral segmentation in the millipede Glomeris marginata (Myriapoda: Diplopoda). Developmental Biology, 2004, 268, 89-104.	0.9	130
62	Gene expression in spider appendages reveals reversal of exd/hth spatial specificity, altered leg gap gene dynamics, and suggests divergent distal morphogen signaling. Developmental Biology, 2003, 264, 119-140.	0.9	114