Qigang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4323490/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regenerated hydrogel electrolyte towards an all-gel supercapacitor. Science China Materials, 2022, 65, 115-123.	6.3	10
2	Spatiotemporally-regulated multienzymatic polymerization endows hydrogel continuous gradient and spontaneous actuation. Science China Chemistry, 2022, 65, 153-161.	8.2	2
3	GOx/Hb Cascade Oxidized Crosslinking of Silk Fibroin for Tissue-Responsive Wound Repair. Gels, 2022, 8, 56.	4.5	3
4	Reshaping the Tumor Immune Microenvironment Based on a Lightâ€Activated Nanoplatform for Efficient Cancer Therapy. Advanced Materials, 2022, 34, e2108908.	21.0	41
5	Photothermoâ€Promoted Nanocatalysis Combined with H ₂ Sâ€Mediated Respiration Inhibition for Efficient Cancer Therapy. Advanced Functional Materials, 2021, 31, 2007991.	14.9	70
6	3D–printing AIE stereolithography resins with realâ^'time monitored printing process to fabricate fluorescent objects. Composites Part B: Engineering, 2021, 206, 108526.	12.0	14
7	Enzyme-Laden Bioactive Hydrogel for Biocatalytic Monitoring and Regulation. Accounts of Chemical Research, 2021, 54, 1274-1287.	15.6	59
8	Spatiotemporal Magnetocaloric Microenvironment for Guiding the Fate of Biodegradable Polymer Implants. Advanced Functional Materials, 2021, 31, 2009661.	14.9	19
9	Tissue Fluid Triggered Enzyme Polymerization for Ultrafast Gelation and Cartilage Repair. Angewandte Chemie - International Edition, 2021, 60, 19982-19987.	13.8	19
10	A Compartmental Silica Nanoreactor for Multienzymeâ€Regulated Superactive Catalytic Therapy. Advanced Functional Materials, 2021, 31, 2103531.	14.9	10
11	Construction of self-assembled nanogel as mulitenzyme mimics for bioresponsive tandem-catalysis imaging. Science China Materials, 2021, 64, 3079-3086.	6.3	5
12	Tissue Fluid Triggered Enzyme Polymerization for Ultrafast Gelation and Cartilage Repair. Angewandte Chemie, 2021, 133, 20135-20140.	2.0	2
13	A bimetallic oxide NiMnO3 with perovskite structured as a high-performance cathode for zinc ion batteries. Ionics, 2021, 27, 4811-4818.	2.4	12
14	Reversible Dendritic rystalâ€Reinforced Polymer Gel for Bioinspired Adaptable Adhesive. Advanced Materials, 2021, 33, e2103174.	21.0	35
15	Highly transparent conductive ionohydrogel for all-climate wireless human-motion sensor. Chemical Engineering Journal, 2021, 420, 129865.	12.7	47
16	Peroxisome inspired hybrid enzyme nanogels for chemodynamic and photodynamic therapy. Nature Communications, 2021, 12, 5243.	12.8	111
17	MoS2 nanosheet initiated smart polymeric hydrogel for NIR-driven Ag(I) enrichment. Chemical Engineering Journal, 2020, 382, 123018.	12.7	23
18	A Neutrophilâ€Inspired Supramolecular Nanogel for Magnetocaloric–Enzymatic Tandem Therapy. Angewandte Chemie, 2020, 132, 3761-3767.	2.0	42

#	Article	IF	CITATIONS
19	A Neutrophilâ€Inspired Supramolecular Nanogel for Magnetocaloric–Enzymatic Tandem Therapy. Angewandte Chemie - International Edition, 2020, 59, 3732-3738.	13.8	39
20	Enhanced Solarâ€Ðrivenâ€Heating and Tough Hydrogel Electrolyte by Photothermal Effect and Hofmeister Effect. Small, 2020, 16, e2004091.	10.0	21
21	Frontispiz: Nanogel Multienzyme Mimics Synthesized by Biocatalytic ATRP and Metal Coordination for Bioresponsive Fluorescence Imaging. Angewandte Chemie, 2020, 132, .	2.0	Ο
22	Bioinspired Soft Microrobots with Precise Magnetoâ€Collective Control for Microvascular Thrombolysis. Advanced Materials, 2020, 32, e2000366.	21.0	105
23	Hofmeisterâ€Effectâ€Guided Ionohydrogel Design as Printable Bioelectronic Devices. Advanced Materials, 2020, 32, e2000189.	21.0	31
24	Nanogel Multienzyme Mimics Synthesized by Biocatalytic ATRP and Metal Coordination for Bioresponsive Fluorescence Imaging. Angewandte Chemie - International Edition, 2020, 59, 11748-11753.	13.8	37
25	Frontispiece: Nanogel Multienzyme Mimics Synthesized by Biocatalytic ATRP and Metal Coordination for Bioresponsive Fluorescence Imaging. Angewandte Chemie - International Edition, 2020, 59, .	13.8	0
26	Strength-tunable printing of xanthan gum hydrogel <i>via</i> enzymatic polymerization and amide bioconjugation. Chemical Communications, 2020, 56, 3457-3460.	4.1	10
27	Nanogel Multienzyme Mimics Synthesized by Biocatalytic ATRP and Metal Coordination for Bioresponsive Fluorescence Imaging. Angewandte Chemie, 2020, 132, 11846-11851.	2.0	9
28	Water-mediated crystallohydrate–polymer composite as a phase-change electrolyte. Nature Communications, 2020, 11, 1843.	12.8	22
29	Dual-Enzyme Crosslinking and Post-polymerization for Printing of Polysaccharide-Polymer Hydrogel. Frontiers in Chemistry, 2020, 8, 36.	3.6	12
30	Single-Atom-Thick Active Layers Realized in Nanolaminated Ti ₃ (Al _{<i>x</i>} Cu _{1–<i>x</i>})C ₂ and Its Artificial Enzyme Behavior. ACS Nano, 2019, 13, 9198-9205.	14.6	59
31	Diffusion-determined assembly of all-climate supercapacitors <i>via</i> bioinspired aligned gels. Journal of Materials Chemistry A, 2019, 7, 19753-19760.	10.3	25
32	Hofmeister Effectâ€Aided Assembly of Enhanced Hydrogel Supercapacitor with Excellent Interfacial Contact and Reliability. Small Methods, 2019, 3, 1900558.	8.6	48
33	Controllable Formation of Ternary Inorganic-Supramolecular-Polymeric Hydrogels by Amidation-Fueled Self-assembly and Enzymatic Post-cross-linking for Ultrasound Theranostic. ACS Biomaterials Science and Engineering, 2019, 5, 5888-5896.	5.2	17
34	One-pot preparation of double network hydrogels <i>via</i> enzyme-mediated polymerization and post-self-assembly for wound healing. Journal of Materials Chemistry B, 2019, 7, 6195-6201.	5.8	15
35	Aligned Ionogel Electrolytes for Highâ€Temperature Supercapacitors. Advanced Science, 2019, 6, 1801337.	11.2	48
36	Dissolution–Crystallization Transition within a Polymer Hydrogel for a Processable Ultratough Electrolyte. Advanced Materials, 2019, 31, e1900248.	21.0	88

#	Article	IF	CITATIONS
37	Supramolecular protein glue to boost enzyme activity. Science China Materials, 2019, 62, 1341-1349.	6.3	8
38	Supercapacitors: Aligned Ionogel Electrolytes for High-Temperature Supercapacitors (Adv. Sci. 5/2019). Advanced Science, 2019, 6, 1970029.	11.2	2
39	"All-in-Gel―design for supercapacitors towards solid-state energy devices with thermal and mechanical compliance. Journal of Materials Chemistry A, 2019, 7, 8826-8831.	10.3	41
40	Injectable Peptide Hydrogel Enables Integrated Tandem Enzymes' Superactivity for Cancer Therapy. IScience, 2019, 14, 27-35.	4.1	17
41	One-Step Nanosurface Self-Assembly of <scp>d</scp> -Peptides Renders Bubble-Free Ultrasound Theranostics. Nano Letters, 2019, 19, 2251-2258.	9.1	25
42	Enzymatic crosslinking to fabricate antioxidant peptide-based supramolecular hydrogel for improving cutaneous wound healing. Journal of Materials Chemistry B, 2019, 7, 2220-2225.	5.8	58
43	Cascade enzymes within self-assembled hybrid nanogel mimicked neutrophil lysosomes for singlet oxygen elevated cancer therapy. Nature Communications, 2019, 10, 240.	12.8	143
44	Nanoinitiator for enzymatic anaerobic polymerization and graft enhancement of gelatin–PAAM hydrogel. Journal of Materials Chemistry B, 2018, 6, 1402-1409.	5.8	8
45	Oxidoreductaseâ€Initiated Radical Polymerizations to Design Hydrogels and Micro/Nanogels: Mechanism, Molding, and Applications. Advanced Materials, 2018, 30, e1705668.	21.0	60
46	A multi-layered touch-pressure sensing ionogel material suitable for sensing integrated actuations of soft robots. Sensors and Actuators A: Physical, 2018, 272, 341-348.	4.1	22
47	Gum Arabic: A promising candidate for the construction of physical hydrogels exhibiting highly stretchable, self-healing and tensility reinforcing performances. Carbohydrate Polymers, 2018, 181, 167-174.	10.2	38
48	Polyampholyte-doped aligned polymer hydrogels as anisotropic electrolytes for ultrahigh-capacity supercapacitors. Journal of Materials Chemistry A, 2018, 6, 58-64.	10.3	38
49	Extreme Temperature-Tolerant Organohydrogel Electrolytes for Laminated Assembly of Biaxially Stretchable Pseudocapacitors. ACS Applied Materials & Interfaces, 2018, 10, 42959-42966.	8.0	39
50	Humidity-sensitive polymer xerogel actuators prepared by biaxial pre-stretching and drying. Chemical Communications, 2018, 54, 11610-11613.	4.1	22
51	Controllable Growth of Core–Shell Nanogels via Esterase-Induced Self-Assembly of Peptides for Drug Delivery. Journal of Biomedical Nanotechnology, 2018, 14, 354-361.	1.1	14
52	Touch Locating and Stretch Sensing Studies of Conductive Hydrogels with Applications to Soft Robots. Sensors, 2018, 18, 569.	3.8	19
53	Waterâ€Deactivated Polyelectrolyte Hydrogel Electrolytes for Flexible Highâ€Voltage Supercapacitors. ChemSusChem, 2018, 11, 3410-3415.	6.8	67
54	FEM and experimental studies of flexible pressure sensors with micro-structured dielectric layers. Journal of Micromechanics and Microengineering, 2018, 28, 105001.	2.6	13

#	Article	IF	CITATIONS
55	Oxygen-tuned nanozyme polymerization for the preparation of hydrogels with printable and antibacterial properties. Journal of Materials Chemistry B, 2017, 5, 1518-1524.	5.8	34
56	A robust, highly stretchable supramolecular polymer conductive hydrogel with self-healability and thermo-processability. Scientific Reports, 2017, 7, 41566.	3.3	132
57	Development and modeling of a new ionogel based actuator. Journal of Intelligent Material Systems and Structures, 2017, 28, 2036-2050.	2.5	8
58	Adhesive nanocomposites of hypergravity induced Co ₃ O ₄ nanoparticles and natural gels as Li-ion battery anode materials with high capacitance andÂlow resistance. RSC Advances, 2017, 7, 21061-21067.	3.6	15
59	Dynamic hydrogels produced via monoamine oxidase B-catalyzed deamination and aldimine crosslinking for 3D printing. Journal of Materials Chemistry B, 2017, 5, 5092-5095.	5.8	23
60	<scp>d</scp> -Serine enzymatic metabolism induced formation of a powder-remoldable PAAM–CS hydrogel. Chemical Communications, 2017, 53, 12270-12273.	4.1	7
61	Efficient VEGF targeting delivery of DOX using Bevacizumab conjugated SiO2@LDH for anti-neuroblastoma therapy. Acta Biomaterialia, 2017, 63, 163-180.	8.3	54
62	Tough Ionogelâ€inâ€Mask Hybrid Gel Electrolytes in Supercapacitors with Durable Pressure and Thermal Tolerances. Energy Technology, 2017, 5, 220-224.	3.8	19
63	Hydrogel with Aligned and Tunable Pore Via "Hot Ice―Template Applies as Bioscaffold. Advanced Healthcare Materials, 2016, 5, 648-652.	7.6	21
64	Fe ₃ O ₄ @nanogel via UOx/HRP initiated surface polymerization for pH sensitive drug delivery. RSC Advances, 2016, 6, 53170-53174.	3.6	5
65	Removal of methylene blue with hemicellulose/clay hybrid hydrogels. Chinese Journal of Polymer Science (English Edition), 2016, 34, 709-719.	3.8	52
66	Laccase-mediated formation of mesoporous silica nanoparticle based redox stimuli-responsive hybrid nanogels as a multifunctional nanotheranostic agent. Nanoscale, 2016, 8, 17241-17249.	5.6	42
67	A Tough Nanocomposite Aerogel of Manganese Oxide and Polyaniline as an Electrode for a Supercapacitor. ChemPlusChem, 2016, 81, 40-43.	2.8	18
68	Tough TiO2-rGO-PDMAA nanocomposite hydrogel via one-pot UV polymerization and reduction for photodegradation of methylene blue. Carbon, 2016, 108, 394-403.	10.3	42
69	Viscosity-controlled printing of supramolecular-polymeric hydrogels via dual-enzyme catalysis. Journal of Materials Chemistry B, 2016, 4, 6302-6306.	5.8	22
70	Electromechanical bending behavior study of soft photocurable ionogel actuator using a new finite element method. Smart Materials and Structures, 2016, 25, 095018.	3.5	9
71	Selective Adsorption of La ³⁺ Using a Tough Alginate-Clay-Poly(<i>n</i> -isopropylacrylamide) Hydrogel with Hierarchical Pores and Reversible Re-Deswelling/Swelling Cycles. ACS Sustainable Chemistry and Engineering, 2016, 4, 6732-6743.	6.7	66
72	Controllable preparation of an eggshell membrane supported hydrogel electrolyte with thickness-dependent electrochemical performance. Journal of Materials Chemistry A, 2016, 4, 17933-17938.	10.3	32

#	Article	IF	CITATIONS
73	Printable hybrid hydrogel by dual enzymatic polymerization with superactivity. Chemical Science, 2016, 7, 2748-2752.	7.4	102
74	Bioinorganic Nanocomposite Hydrogels Formed by HRP–GOxâ€Cascadeâ€Catalyzed Polymerization and Exfoliation of the Layered Composites. Chemistry - A European Journal, 2015, 21, 12620-12626.	3.3	18
75	A polymer/clay nanocomposite gel via chlorinated paraffin solvent initiated photopolymerization with electrorheological performance. RSC Advances, 2015, 5, 7752-7754.	3.6	5
76	Microgels formed by enzyme-mediated polymerization in reverse micelles with tunable activity and high stability. RSC Advances, 2015, 5, 44342-44345.	3.6	8
77	Hydrogel-coated enzyme electrodes formed by GOx-mediated polymerization for glucose detecting. RSC Advances, 2015, 5, 47244-47247.	3.6	8
78	Dual-Enzyme-Loaded Multifunctional Hybrid Nanogel System for Pathological Responsive Ultrasound Imaging and <i>T</i> ₂ -Weighted Magnetic Resonance Imaging. ACS Nano, 2015, 9, 5646-5656.	14.6	122
79	Cobalt Oxide-Carbon Nanosheet Nanoarchitecture as an Anode for High-Performance Lithium-Ion Battery. ACS Applied Materials & Interfaces, 2015, 7, 2882-2890.	8.0	101
80	Elastic ionogels with freeze-aligned pores exhibit enhanced electrochemical performances as anisotropic electrolytes of all-solid-state supercapacitors. Journal of Materials Chemistry A, 2015, 3, 15408-15412.	10.3	24
81	Iron oxide/manganese oxide co-loaded hybrid nanogels as pH-responsive magnetic resonance contrast agents. Biomaterials, 2015, 53, 349-357.	11.4	76
82	Microgel coating of magnetic nanoparticles via bienzyme-mediated free-radical polymerization for colorimetric detection of glucose. Nanoscale, 2015, 7, 16578-16582.	5.6	45
83	A hybrid gel of hypergravity prepared NiO and polyaniline as Li-ion battery anodes. RSC Advances, 2015, 5, 88419-88424.	3.6	7
84	Functional Elastic Hydrogel as Recyclable Membrane for the Adsorption and Degradation of Methylene Blue. PLoS ONE, 2014, 9, e88802.	2.5	15
85	Selfâ€Recovering Tough Gel Electrolyte with Adjustable Supercapacitor Performance. Advanced Materials, 2014, 26, 4370-4375.	21.0	172
86	Magnetic Nanocomposite Hydrogel Prepared by ZnO-initiated Photopolymerization for La (III) Adsorption. ACS Applied Materials & Interfaces, 2014, 6, 19840-19849.	8.0	78
87	Dual enzymatic formation of hybrid hydrogels with supramolecular-polymeric networks. Chemical Communications, 2014, 50, 14429-14432.	4.1	31
88	Glucose oxidase triggers gelation of N-hydroxyimide–heparin conjugates to form enzyme-responsive hydrogels for cell-specific drug delivery. Chemical Science, 2014, 5, 4204-4209.	7.4	48
89	Fluorinated graphene: facile solution preparation and tailorable properties by fluorine-content tuning. Journal of Materials Chemistry A, 2014, 2, 8782-8789.	10.3	121
90	Nanocomposite Gels via in Situ Photoinitiation and Disassembly of TiO ₂ –Clay Composites with Polymers Applied as UV Protective Films. ACS Applied Materials & Interfaces, 2014, 6, 1356-1360.	8.0	63

#	Article	IF	CITATIONS
91	Molecular Hydrogel-Stabilized Enzyme with Facilitated Electron Transfer for Determination of H ₂ O ₂ Released from Live Cells. Analytical Chemistry, 2014, 86, 4395-4401.	6.5	80
92	Tough BMIMCI-based ionogels exhibiting excellent and adjustable performance in high-temperature supercapacitors. Journal of Materials Chemistry A, 2014, 2, 11569.	10.3	91
93	Tough Nanocomposite Ionogel-based Actuator Exhibits Robust Performance. Scientific Reports, 2014, 4, 6673.	3.3	71
94	High {001} facets dominated BiOBr lamellas: facile hydrolysis preparation and selective visible-light photocatalytic activity. Journal of Materials Chemistry A, 2013, 1, 8622.	10.3	312
95	BSA–rGO nanocomposite hydrogel formed by UV polymerization and in situ reduction applied as biosensor electrode. Journal of Materials Chemistry B, 2013, 1, 5393.	5.8	22
96	HRP-mediated polymerization forms tough nanocomposite hydrogels with high biocatalytic performance. Chemical Communications, 2013, 49, 8033.	4.1	57
97	Thermal responsive microgels as recyclable carriers to immobilize active proteins with enhanced nonaqueous biocatalytic performance. Chemical Communications, 2013, 49, 11299.	4.1	25
98	Adsorption of lanthanum (III) from aqueous solution using 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester-grafted magnetic silica nanocomposites. Journal of Hazardous Materials, 2013, 260, 409-419.	12.4	117
99	Semiconductor nanoparticle-based hydrogels prepared via self-initiated polymerization under sunlight, even visible light. Scientific Reports, 2013, 3, 1399.	3.3	81
100	Preparation, characterization and adsorptive study of rare earth ions using magnetic GMZ bentonite. Applied Clay Science, 2012, 62-63, 87-93.	5.2	55
101	Selective Removal of La(III) Ions Using Super-Paramagnetic Nanosorbent Coated by Saponified <i>sec</i> -Octylphenoxy Acetic Acid. Journal of Chemical & Engineering Data, 2012, 57, 553-560.	1.9	19
102	Eu(III) adsorption using di(2-thylhexly) phosphoric acid-immobilized magnetic GMZ bentonite. Chemical Engineering Journal, 2012, 181-182, 387-396.	12.7	89
103	High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature, 2010, 463, 339-343.	27.8	1,446
104	Small peptide nanofibers as the matrices of molecular hydrogels for mimicking enzymes and enhancing the activity of enzymes. Chemical Society Reviews, 2010, 39, 3425.	38.1	242
105	Bioinspired Supramolecular Confinement of Luminol and Heme Proteins to Enhance the Chemiluminescent Quantum Yield. Chemistry - A European Journal, 2009, 15, 3168-3172.	3.3	27
106	High Catalytic Activities of Artificial Peroxidases Based on Supramolecular Hydrogels That Contain Heme Models. Chemistry - A European Journal, 2008, 14, 5073-5078.	3.3	63
107	Enzymatic hydrogelation to immobilize an enzyme for high activity and stability. Soft Matter, 2008, 4, 550.	2.7	106
108	Bisphosphonate-containing supramolecular hydrogels for topical decorporation of uranium-contaminated wounds in mice. International Journal of Radiation Biology, 2008, 84, 353-362.	1.8	25

#	Article	IF	CITATIONS
109	Molecular hydrogel-immobilized enzymes exhibit superactivity and high stability in organic solvents. Chemical Communications, 2007, , 1032.	4.1	126
110	Using β-Lactamase to Trigger Supramolecular Hydrogelation. Journal of the American Chemical Society, 2007, 129, 266-267.	13.7	203
111	A Supramolecular-Hydrogel-Encapsulated Hemin as an Artificial Enzyme to Mimic Peroxidase. Angewandte Chemie - International Edition, 2007, 46, 4285-4289.	13.8	369
112	Immobilization of hemoglobin at the galleries of layered niobate HCaNbO. Biomaterials, 2005, 26, 5267-5275.	11.4	30
113	Layered Structural Heme Protein Magadiite Nanocomposites with High Enzyme-like Peroxidase Activity. Chemistry of Materials, 2004, 16, 2675-2684.	6.7	64
114	Reversible Intercalation of Large-Capacity Hemoglobin into in Situ Prepared Titanate Interlayers with Enhanced Thermal and Organic Medium Stabilities. Langmuir, 2004, 20, 10231-10237.	3.5	36
115	Enhanced Catalytic Activity of Hemoglobin in Organic Solvents by Layered Titanate Immobilization. Journal of the American Chemical Society, 2004, 126, 14346-14347.	13.7	79