Dong Bian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4323171/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative in vitro study on binary Mg-RE (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) alloy systems. Acta Biomaterialia, 2020, 102, 508-528.	8.3	135
2	Fatigue behaviors of HP-Mg, Mg–Ca and Mg–Zn–Ca biodegradable metals in air and simulated body fluid. Acta Biomaterialia, 2016, 41, 351-360.	8.3	95
3	Fe–Au and Fe–Ag composites as candidates for biodegradable stent materials. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 225-240.	3.4	87
4	In Vitro and in Vivo Studies on Biomedical Magnesium Low-Alloying with Elements Gadolinium and Zinc for Orthopedic Implant Applications. ACS Applied Materials & Interfaces, 2018, 10, 4394-4408.	8.0	82
5	Development of magnesium-based biodegradable metals with dietary trace element germanium as orthopaedic implant applications. Acta Biomaterialia, 2017, 64, 421-436.	8.3	81
6	Study on the Mg-Li-Zn ternary alloy system with improved mechanical properties, good degradation performance and different responses to cells. Acta Biomaterialia, 2017, 62, 418-433.	8.3	65
7	In vitro and in vivo studies of Mg-30Sc alloys with different phase structure for potential usage within bone. Acta Biomaterialia, 2019, 98, 50-66.	8.3	62
8	Biomimetic Ti–6Al–4V alloy/gelatin methacrylate hybrid scaffold with enhanced osteogenic and angiogenic capabilities for large bone defect restoration. Bioactive Materials, 2021, 6, 3437-3448.	15.6	43
9	A Comparative inÂvitro Study on Biomedical Zr–2.5X (XÂ=ÂNb, Sn) Alloys. Journal of Materials Science and Technology, 2014, 30, 299-306.	10.7	37
10	PDLLA-Zn-nitrided Fe bioresorbable scaffold with 53-μm-thick metallic struts and tunable multistage biodegradation function. Science Advances, 2021, 7, .	10.3	31
11	Biomimicking Bone–Implant Interface Facilitates the Bioadaption of a New Degradable Magnesium Alloy to the Bone Tissue Microenvironment. Advanced Science, 2021, 8, e2102035.	11.2	31
12	Influence of biocompatible metal ions (Ag, Fe, Y) on the surface chemistry, corrosion behavior and cytocompatibility of Mg–1Ca alloy treated with MEVVA. Colloids and Surfaces B: Biointerfaces, 2015, 133, 99-107.	5.0	23
13	Predicting the degradation behavior of magnesium alloys with a diffusion-based theoretical model and in vitro corrosion testing. Journal of Materials Science and Technology, 2019, 35, 1393-1402.	10.7	23
14	Magnetic resonance (MR) safety and compatibility of a novel iron bioresorbable scaffold. Bioactive Materials, 2020, 5, 260-274.	15.6	18
15	Degradation behaviors and in-vivo biocompatibility of a rare earth- and aluminum-free magnesium-based stent. Acta Biomaterialia, 2021, 124, 382-397.	8.3	18
16	In vitro characterization of ZM21 mini-tube used for biodegradable metallic stent. Materials Letters, 2018, 211, 261-265.	2.6	7
17	In vivo studies on Mg-1Sc alloy for orthopedic application: A 5-months evaluation in rabbits. Materials Letters, 2020, 262, 127130.	2.6	6
18	Fluorescent <i>In Situ</i> 3D Visualization of Dynamic Corrosion Processes of Magnesium Alloys. ACS Applied Bio Materials, 2022, 5, 2340-2346.	4.6	2

#	Article	IF	CITATIONS
19	Fabrication, Testing and Performance of Rare Earth-Containing Magnesium Biodegradable Metals. , 2016, , 315-316.		0