
Rong He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4322169/publications.pdf Version: 2024-02-01

PONC HE

#	Article	IF	CITATIONS
1	Facile synthesis of pentacle gold–copper alloy nanocrystals and their plasmonic and catalytic properties. Nature Communications, 2014, 5, 4327.	12.8	294
2	A New Nanobiocatalytic System Based on Allosteric Effect with Dramatically Enhanced Enzymatic Performance. Journal of the American Chemical Society, 2013, 135, 1272-1275.	13.7	284
3	Molybdenum Disulfide–Black Phosphorus Hybrid Nanosheets as a Superior Catalyst for Electrochemical Hydrogen Evolution. Nano Letters, 2017, 17, 4311-4316.	9.1	211
4	Nickel Doping in Atomically Thin Tin Disulfide Nanosheets Enables Highly Efficient CO ₂ Reduction. Angewandte Chemie - International Edition, 2018, 57, 10954-10958.	13.8	186
5	Advanced photocatalysts for uranium extraction: Elaborate design and future perspectives. Coordination Chemistry Reviews, 2022, 467, 214615.	18.8	170
6	Achieving the Widest Range of Syngas Proportions at High Current Density over Cadmium Sulfoselenide Nanorods in CO ₂ Electroreduction. Advanced Materials, 2018, 30, 1705872.	21.0	145
7	Superhydrophilic and highly elastic monolithic sponge for efficient solar-driven radioactive wastewater treatment under one sun. Journal of Hazardous Materials, 2020, 392, 122350.	12.4	119
8	Semiconducting Metal–Organic Frameworks Decorated with Spatially Separated Dual Cocatalysts for Efficient Uranium(VI) Photoreduction. Advanced Functional Materials, 2022, 32, .	14.9	94
9	Efficient uranium reduction of bacterial cellulose-MoS2 heterojunction via the synergistically effect of Schottky junction and S-vacancies engineering. Chemical Engineering Journal, 2021, 406, 126791.	12.7	91
10	Efficient extraction of uranium in organics-containing wastewater over g-C3N4/GO hybrid nanosheets with type-II band structure. Journal of Hazardous Materials, 2020, 384, 121383.	12.4	79
11	Enhanced photoreduction of U(VI) on WO3 nanosheets by oxygen defect engineering. Chemical Engineering Journal, 2021, 416, 129164.	12.7	78
12	Bioconcentration and bioassembly of N/S co-doped carbon with excellent stability for supercapacitors. Applied Surface Science, 2019, 488, 316-325.	6.1	68
13	Bio-Inspired Biomass-Derived Carbon Aerogels with Superior Mechanical Property for Oil–Water Separation. ACS Sustainable Chemistry and Engineering, 2020, 8, 6458-6465.	6.7	61
14	Cu-based nanocrystals on ZnO for uranium photoreduction: Plasmon-assisted activity and entropy-driven stability. Applied Catalysis B: Environmental, 2021, 288, 119978.	20.2	59
15	Integration of Kinetic Control and Lattice Mismatch To Synthesize Pd@AuCu Core–Shell Planar Tetrapods with Size-Dependent Optical Properties. Nano Letters, 2016, 16, 3036-3041.	9.1	58
16	Boosting the oxygen evolution activity over cobalt nitride nanosheets through optimizing the electronic configuration. Applied Catalysis B: Environmental, 2021, 286, 119894.	20.2	56
17	Three-dimensional C3N5/RGO aerogels with enhanced visible-light response and electron-hole separation efficiency for photocatalytic uranium reduction. Chemical Engineering Journal, 2022, 427, 131773.	12.7	56
18	<i>Thalia dealbata</i> Inspired Anisotropic Cellular Biomass Derived Carbonaceous Aerogel. ACS Sustainable Chemistry and Engineering, 2018, 6, 17152-17159.	6.7	51

Rong He

#	Article	IF	CITATIONS
19	Metal-free 2D/2D C3N5/GO nanosheets with customized energy-level structure for radioactive nuclear wastewater treatment. Journal of Hazardous Materials, 2022, 422, 126912.	12.4	49
20	Introduction of cation vacancies and iron doping into TiO2 enabling efficient uranium photoreduction. Journal of Hazardous Materials, 2022, 423, 126935.	12.4	48
21	Integration of bio-inspired adsorption and photodegradation for the treatment of organics-containing radioactive wastewater. Chemical Engineering Journal, 2019, 364, 139-145.	12.7	47
22	Nickel Doping in Atomically Thin Tin Disulfide Nanosheets Enables Highly Efficient CO ₂ Reduction. Angewandte Chemie, 2018, 130, 11120-11124.	2.0	42
23	Tellurium nanowires wrapped by surface oxidized tin disulfide nanosheets achieves efficient photocatalytic reduction of U(VI). Chemical Engineering Journal, 2021, 426, 130756.	12.7	42
24	Boosting the Loading of Metal Single Atoms via a Bioconcentration Strategy. Small, 2020, 16, e1905920.	10.0	40
25	Hybridization of Defective Tin Disulfide Nanosheets and Silver Nanowires Enables Efficient Electrochemical Reduction of CO ₂ into Formate and Syngas. Small, 2019, 15, e1904882.	10.0	39
26	Enhanced uranium photoreduction on Ti3C2Tx MXene by modulation of surface functional groups and deposition of plasmonic metal nanoparticles. Journal of Hazardous Materials, 2022, 426, 127823.	12.4	38
27	Ultra-high nitrogen content biomass carbon supercapacitors and nitrogen forms analysis. Journal of Alloys and Compounds, 2019, 809, 151664.	5.5	36
28	Efficient Photocatalytic Extraction of Uranium over Ethylenediamine Capped Cadmium Sulfide Telluride Nanobelts. ACS Applied Materials & Interfaces, 2021, 13, 11968-11976.	8.0	32
29	Decoration of In nanoparticles on In ₂ S ₃ nanosheets enables efficient electrochemical reduction of CO ₂ . Chemical Communications, 2020, 56, 4212-4215.	4.1	30
30	Encapsulating Ag nanoparticles into ZIF-8 as an efficient strategy to boost uranium photoreduction without sacrificial agents. Journal of Materials Chemistry A, 2021, 9, 9809-9814.	10.3	30
31	Chloride-induced shape transformation of silver nanoparticles in a water environment. Environmental Pollution, 2015, 204, 145-151.	7.5	27
32	Au atoms doped in Ti3C2Tx MXene: Benefiting recovery of oxygen vacancies towards photocatalytic aerobic oxidation. Nano Research, 2022, 15, 2862-2869.	10.4	25
33	Harmonizing the energy band between adsorbent and semiconductor enables efficient uranium extraction. Chemical Engineering Journal, 2021, 420, 127645.	12.7	24
34	Achieving efficient photocatalytic uranium extraction within a record short period of 3Âmin by Up-conversion erbium doped ZnO nanosheets. Chemical Engineering Journal, 2022, 450, 138044.	12.7	22
35	Supercapacitors with high nitrogen content by cage-like Ganoderma lucidum spore. Applied Surface Science, 2019, 494, 230-238.	6.1	17
36	Synthesis of Uranium Single Atom from Radioactive Wastewater for Enhanced Water Dissociation and Hydrogen Evolution. Small, 2022, 18, e2107444.	10.0	17

Rong He

#	Article	IF	CITATIONS
37	Sulfur edge in molybdenum disulfide nanosheets achieves efficient uranium binding and electrocatalytic extraction in seawater. Nanoscale, 2022, 14, 6285-6290.	5.6	16
38	Hydrogen-incorporated vanadium dioxide nanosheets enable efficient uranium confinement and photoreduction. Nano Research, 2022, 15, 2943-2951.	10.4	14
39	Elemental Doping Induced Sulfur Vacancies Enable Efficient Electrochemical Reduction of CO ₂ over CdS Nanorods. Journal of Physical Chemistry C, 2022, 126, 102-109.	3.1	12
40	Heavy metal fixation of lead-contaminated soil using Morchella mycelium. Environmental Pollution, 2021, 289, 117829.	7.5	11
41	In-situ oxidized tungsten disulfide nanosheets achieve ultrafast photocatalytic extraction of uranium through hydroxyl-mediated binding and reduction. Nano Research, 2022, 15, 8810-8818.	10.4	11
42	Understanding the interfacial interactions of bioinspired chitosan-calcite nanocomposites by first principles molecular dynamics simulations and experimental FT-IR spectroscopy. Carbohydrate Polymers, 2019, 223, 115054.	10.2	9
43	Mineralization Mechanism of Mineralization Bacteria on Strontium Crystallization of Simulated Radionuclides. Crystal Research and Technology, 2020, 55, 1900133.	1.3	5
44	Pentacle gold–copper alloy nanocrystals: a new system for entering male germ cells in vitro and in vivo. Scientific Reports, 2016, 6, 39592.	3.3	3
45	Constructing interparticle hotspots through cracking silver nanoplates for laser initiation of explosives. Optics and Laser Technology, 2021, 139, 106989.	4.6	2
46	Single-atom Fe–N4 site for the hydrogenation of nitrobenzene: theoretical and experimental studies. Dalton Transactions, 2021, 50, 7995-8001.	3.3	2
47	Connection of Ru nanoparticles with rich defects enables the enhanced electrochemical reduction of nitrogen. Physical Chemistry Chemical Physics, 2022, 24, 11491-11495.	2.8	2
48	Constructing hotspots through star-shaped gold-copper alloy nanocrystals for laser initiation of explosives. Optics and Laser Technology, 2022, 152, 108120.	4.6	1
49	Synthesis of Uranium Single Atom from Radioactive Wastewater for Enhanced Water Dissociation and Hydrogen Evolution (Small 11/2022). Small, 2022, 18, .	10.0	0