Diana n H Tran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4322047/publications.pdf

Version: 2024-02-01

48 papers

3,278 citations

172207 29 h-index 214527 47 g-index

48 all docs 48 docs citations

48 times ranked 5254 citing authors

#	Article	IF	CITATIONS
1	Bismuth Oxide Films for X-ray shielding: Effects of particle size and structural morphology. Materials Chemistry and Physics, 2021, 260, 124084.	2.0	18
2	Grapheneâ€Based Sorbents for Multipollutants Removal in Water: A Review of Recent Progress. Advanced Functional Materials, 2021, 31, 2007356.	7.8	75
3	Lightweight Bismuth Titanate (Bi ₄ Ti ₃ O ₁₂) Nanoparticle-Epoxy Composite for Advanced Lead-Free X-ray Radiation Shielding. ACS Applied Nano Materials, 2021, 4, 7471-7478.	2.4	28
4	High-yield preparation of edge-functionalized and water dispersible few-layers of hexagonal boron nitride (hBN) by direct wet chemical exfoliation. Nanotechnology, 2021, 32, 405601.	1.3	10
5	Unlocking thermogravimetric analysis (TGA) in the fight against "Fake graphene―materials. Carbon, 2021, 179, 505-513.	5.4	88
6	A Unique Synthesis of Macroporous N-Doped Carbon Composite Catalyst for Oxygen Reduction Reaction. Nanomaterials, 2021, 11, 43.	1.9	4
7	Revealing the dependence of graphene concentration and physicochemical properties on the crushing strength of co-granulated fertilizers by wet granulation process. Powder Technology, 2020, 360, 588-597.	2.1	10
8	Polyamine-modified reduced graphene oxide: A new and cost-effective adsorbent for efficient removal of mercury in waters. Separation and Purification Technology, 2020, 238, 116441.	3.9	38
9	Allâ€inâ€One Bioinspired Multifunctional Graphene Biopolymer Foam for Simultaneous Removal of Multiple Water Pollutants. Advanced Materials Interfaces, 2020, 7, 2000664.	1.9	16
10	Removal of Multiple Water Pollutants: Allâ€inâ€One Bioinspired Multifunctional Graphene Biopolymer Foam for Simultaneous Removal of Multiple Water Pollutants (Adv. Mater. Interfaces 18/2020). Advanced Materials Interfaces, 2020, 7, 2070103.	1.9	2
11	Multithiol functionalized graphene bio-sponge via photoinitiated thiol-ene click chemistry for efficient heavy metal ions adsorption. Chemical Engineering Journal, 2020, 395, 124965.	6.6	77
12	Physiochemical and mechanical properties of reduced graphene oxide–cement mortar composites: Effect of reduced graphene oxide particle size. Construction and Building Materials, 2020, 250, 118832.	3.2	36
13	MoS ₂ /Graphene Composites as Promising Materials for Energy Storage and Conversion Applications. Advanced Materials Interfaces, 2019, 6, 1900915.	1.9	54
14	Supercapacitors: MoS ₂ /Graphene Composites as Promising Materials for Energy Storage and Conversion Applications (Adv. Mater. Interfaces 20/2019). Advanced Materials Interfaces, 2019, 6, 1970129.	1.9	0
15	Tuning the Multifunctional Surface Chemistry of Reduced Graphene Oxide via Combined Elemental Doping and Chemical Modifications. ACS Omega, 2019, 4, 19787-19798.	1.6	44
16	Multifunctional Binding Chemistry on Modified Graphene Composite for Selective and Highly Efficient Adsorption of Mercury. ACS Applied Materials & Samp; Interfaces, 2019, 11, 6350-6362.	4.0	136
17	Engineering of highly conductive and ultra-thin nitrogen-doped graphene films by combined methods of microwave irradiation, ultrasonic spraying and thermal annealing. Chemical Engineering Journal, 2018, 338, 764-773.	6.6	32
18	Cogranulation of Low Rates of Graphene and Graphene Oxide with Macronutrient Fertilizers Remarkably Improves Their Physical Properties. ACS Sustainable Chemistry and Engineering, 2018, 6, 1299-1309.	3.2	17

#	Article	IF	Citations
19	Scanning atmospheric plasma for ultrafast reduction of graphene oxide and fabrication of highly conductive graphene films and patterns. Carbon, 2018, 127, 113-121.	5.4	71
20	The hydrothermal processing of iron oxides from bacterial biofilm waste as new nanomaterials for broad applications. RSC Advances, 2018, 8, 34848-34852.	1.7	5
21	A Facile Synthesis Procedure for Sulfonated Aniline Oligomers with Distinct Microstructures. Materials, 2018, 11, 1755.	1.3	5
22	Green Synthesis of Three-Dimensional Hybrid N-Doped ORR Electro-Catalysts Derived from Apricot Sap. Materials, 2018, 11, 205.	1.3	8
23	Mixedâ€Mode Remediation of Cadmium and Arsenate Ions Using Grapheneâ€Based Materials. Clean - Soil, Air, Water, 2018, 46, 1800073.	0.7	3
24	Interlayer growth of borates for highly adhesive graphene coatings with enhanced abrasion resistance, fire-retardant and antibacterial ability. Carbon, 2017, 117, 252-262.	5.4	52
25	Graphene-Borate as an Efficient Fire Retardant for Cellulosic Materials with Multiple and Synergetic Modes of Action. ACS Applied Materials & Samp; Interfaces, 2017, 9, 10160-10168.	4.0	78
26	Facile Adhesion-Tuning of Superhydrophobic Surfaces between "Lotus―and "Petal―Effect and Their Influence on Icing and Deicing Properties. ACS Applied Materials & Samp; Interfaces, 2017, 9, 8393-8402.	4.0	114
27	Morphology-controlled MnO ₂ modified silicon diatoms for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2017, 5, 10856-10865.	5.2	88
28	Recent Advances in Sensing Applications of Graphene Assemblies and Their Composites. Advanced Functional Materials, 2017, 27, 1702891.	7.8	209
29	Graphene Oxideâ€Based Lamella Network for Enhanced Sound Absorption. Advanced Functional Materials, 2017, 27, 1703820.	7.8	109
30	Graphene Oxide: A New Carrier for Slow Release of Plant Micronutrients. ACS Applied Materials & Samp; Interfaces, 2017, 9, 43325-43335.	4.0	131
31	From Graphene Oxide to Reduced Graphene Oxide: Impact on the Physiochemical and Mechanical Properties of Graphene–Cement Composites. ACS Applied Materials & Samp; Interfaces, 2017, 9, 43275-43286.	4.0	167
32	Study of iron oxide nanoparticle phases in graphene aerogels for oxygen reduction reaction. New Journal of Chemistry, 2017, 41, 15180-15186.	1.4	15
33	Revealing the dependence of the physiochemical and mechanical properties of cement composites on graphene oxide concentration. RSC Advances, 2017, 7, 55148-55156.	1.7	57
34	A Unique 3D Nitrogen-Doped Carbon Composite as High-Performance Oxygen Reduction Catalyst. Materials, 2017, 10, 921.	1.3	14
35	Graphene Oxide-Assisted Liquid Phase Exfoliation of Graphite into Graphene for Highly Conductive Film and Electromechanical Sensors. ACS Applied Materials & Interfaces, 2016, 8, 16521-16532.	4.0	98
36	Functionalized three-dimensional (3D) graphene composite for high efficiency removal of mercury. Environmental Science: Water Research and Technology, 2016, 2, 390-402.	1.2	57

#	Article	IF	CITATIONS
37	Engineering of graphene/epoxy nanocomposites with improved distribution of graphene nanosheets for advanced piezo-resistive mechanical sensing. Journal of Materials Chemistry C, 2016, 4, 3422-3430.	2.7	62
38	Robust Superhydrophobic Graphene-Based Composite Coatings with Self-Cleaning and Corrosion Barrier Properties. ACS Applied Materials & Interfaces, 2015, 7, 28482-28493.	4.0	242
39	Engineered graphene–nanoparticle aerogel composites for efficient removal of phosphate from water. Journal of Materials Chemistry A, 2015, 3, 6844-6852.	5.2	88
40	Graphene: a multipurpose material for protective coatings. Journal of Materials Chemistry A, 2015, 3, 12580-12602.	5.2	248
41	Graphene Aerogels Decorated with α-FeOOH Nanoparticles for Efficient Adsorption of Arsenic from Contaminated Waters. ACS Applied Materials & Samp; Interfaces, 2015, 7, 9758-9766.	4.0	167
42	Selective adsorption of oil–water mixtures using polydimethylsiloxane (PDMS)–graphene sponges. Environmental Science: Water Research and Technology, 2015, 1, 298-305.	1.2	127
43	Graphene-Diatom Silica Aerogels for Efficient Removal of Mercury Ions from Water. ACS Applied Materials & Samp; Interfaces, 2015, 7, 11815-11823.	4.0	190
44	Dynamic Performance of Duolayers at the Air/Water Interface. 1. Experimental Analysis. Journal of Physical Chemistry B, 2014, 118, 10919-10926.	1.2	4
45	Dynamic Performance of Duolayers at the Air/Water Interface. 2. Mechanistic Insights from All-Atom Simulations. Journal of Physical Chemistry B, 2014, 118, 10927-10933.	1.2	5
46	A green approach for the reduction of graphene oxide nanosheets using non-aromatic amino acids. Carbon, 2014, 76, 193-202.	5.4	150
47	Molecular Interactions behind the Synergistic Effect in Mixed Monolayers of 1-Octadecanol and Ethylene Glycol Monooctadecyl Ether. Journal of Physical Chemistry B, 2013, 117, 3603-3612.	1.2	12
48	Rational design of monolayers for improved water evaporation mitigation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 415, 47-58.	2.3	17