
Boris Belyatsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4321852/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hercynian post-collisional A-type granites of the Kokshaal Range, Southern Tien Shan, Kyrgyzstan. Lithos, 2007, 97, 140-160.	1.4	229
2	Early Permian seafloor to continental arc magmatism in the eastern Paleo-Tethys: U–Pb age and Nd–Sr isotope data from the southern Lancangjiang zone, Yunnan, China. Lithos, 2009, 113, 408-422.	1.4	152
3	Sm–Nd and Sr isotope systematics of scheelite from the giant Au(–W) deposit Muruntau (Uzbekistan): implications for the age and sources of Au mineralization. Mineralium Deposita, 2001, 36, 379-392.	4.1	91
4	Diamondiferous kimberlites in central India synchronous with Deccan flood basalts. Earth and Planetary Science Letters, 2010, 290, 142-149.	4.4	88
5	Comparative in-situ U–Th–Pb geochronology and trace element composition of baddeleyite and low-U zircon from carbonatites of the Palaeozoic Kovdor alkaline–ultramafic complex, Kola Peninsula, Russia. Gondwana Research, 2012, 21, 728-744.	6.0	70
6	Petrogenesis of the end-Cretaceous diamondiferous Behradih orangeite pipe: implication for mantle plume–lithosphere interaction in the Bastar craton, Central India. Contributions To Mineralogy and Petrology, 2011, 161, 721-742.	3.1	62
7	The mineral isotope composition of two Precambrian carbonatite complexes from the Kola Alkaline Province – Alteration versus primary magmatic signatures. Lithos, 2006, 91, 229-249.	1.4	50
8	Pyroxenites and megacrysts from Vitim picrite-basalts (Russia): Polybaric fractionation of rising melts in the mantle?. Journal of Asian Earth Sciences, 2011, 42, 14-37.	2.3	44
9	Different zircon recrystallization types in carbonatites caused by magma mixing: Evidence from U–Pb dating, trace element and isotope composition (Hf and O) of zircons from two Precambrian carbonatites from Fennoscandia. Chemical Geology, 2013, 353, 173-198.	3.3	43
10	THE STRUCTURE OF THE LUKKULAISVAARA INTRUSION, OULANKA GROUP, NORTHERN KARELIA: PETROLOGICAL IMPLICATIONS. Canadian Mineralogist, 2001, 39, 607-637.	1.0	40
11	Neodymium isotopic composition of Cambrian–Ordovician biogenic apatite in the Baltoscandian Basin: implications for palaeogeographical evolution and patterns of biodiversity. Geological Magazine, 2005, 142, 419-439.	1.5	40
12	New Sm–Nd, Rb–Sr, U–Pb and Hf isotope systematics for the southern Prince Charles Mountains (East) Tj	ЕТ <u>О</u> ООС) rgBT /Over
13	Trace-element and multi-isotope geochemistry of Late-Archean black shales in the CarajÃis iron-ore district, Brazil. Chemical Geology, 2013, 362, 91-104.	3.3	40
14	Carbonatite diversity in the Central Andes: the Ayopaya alkaline province, Bolivia. Contributions To Mineralogy and Petrology, 2004, 148, 391-408.	3.1	30

16	Geochemical evidences of sedimentary-exhalative origin of the shale-hosted PGE–Ag–Au–Zn–Cu occurrences of the Prades Mountains (Catalonia, Spain): trace-element abundances and Sm–Nd isotopes. Journal of Geochemical Exploration, 2004, 82, 17-33.	3.2	27
17	Sr–Nd–Pb isotope systematics and clinopyroxene-host disequilibrium in ultra-potassic magmas from Toro-Ankole and Virunga, East-African Rift: Implications for magma mixing and source heterogeneity. Lithos, 2014, 210-211, 260-277.	1.4	27
18	The geological composition of the hidden Wilhelm II Land in East Antarctica: SHRIMP zircon, Nd isotopic and geochemical studies with implications for Proterozoic supercontinent reconstructions. Precambrian Research, 2015, 258, 171-185.	2.7	26

Duration of formation of magmatic system of polyphase Paleozoic alkaline complexes of the central Kola: U-Pb, Rb-Sr, Ar-Ar data. Doklady Earth Sciences, 2007, 413, 432-436.

#	Article	IF	CITATIONS
19	Petrology and geochemistry of the Mesoproterozoic Vattikod lamproites, Eastern Dharwar Craton, southern India: evidence for multiple enrichment of sub-continental lithospheric mantle and links with amalgamation and break-up of the Columbia supercontinent. Contributions To Mineralogy and Petrology, 2018, 173, 1.	3.1	25
20	Geochemical features of the quaternary lamproitic lavas of Gaussberg Volcano, East Antarctica: Result of the impact of the Kerguelen plume. Geochemistry International, 2014, 52, 1030-1048.	0.7	24
21	Agpaitic magmatism in the northeastern Baltic Shield: a study of the Niva intrusion, Kola Peninsula, Russia. Lithos, 2000, 51, 27-46.	1.4	21
22	Genesis and age of zircon from alkali and mafic rocks of the Elet'ozero Complex, North Karelia. Petrology, 2015, 23, 259-280.	0.9	21
23	Sm-Nd age of dunite-clinopyroxenite-tylaite association of the Kytlym Massif, the Platinum Belt of the Urals. Doklady Earth Sciences, 2006, 409, 795-800.	0.7	19
24	Geochemical specifics of massifs of the drusite complex in the central Belomorian Mobile Belt: II. Sm-Nd isotopic system of the rocks and the U-Pb isotopic system of zircons. Geochemistry International, 2010, 48, 1064-1083.	0.7	18
25	Paleozoic tholeiitic magmatism of the Kola province: Spatial distribution, age, and relation to alkaline magmatism. Petrology, 2017, 25, 42-65.	0.9	18
26	Petrogenesis of end-Cretaceous/Early Eocene lamprophyres from the Deccan Large Igneous Province: Constraints on plume-lithosphere interaction and the post-Deccan lithosphere-asthenosphere boundary (LAB) beneath NW India. Lithos, 2019, 346-347, 105139.	1.4	17
27	Origin and evolution of the Ilmeny–Vishnevogorsky carbonatites (Urals, Russia): insights from trace-element compositions, and Rb-Sr, Sm-Nd, U-Pb, Lu-Hf isotope data. Mineralogy and Petrology, 2013, 107, 101-123.	1.1	15
28	Basement segmentation and tectonic structure of the Lomonosov Ridge, arctic Ocean: Insights from bedrock geochronology. Journal of Geodynamics, 2019, 128, 38-54.	1.6	15
29	Evolution of the Karoo-Maud mantle plume in antarctica and its influence on the magmatism of the early stages of Indian ocean opening. Geochemistry International, 2009, 47, 1-17.	0.7	14
30	The 3.98–3.63 Ga zircons as indicators of major processes operating in the ancient continental crust of the east Antarctic shield (Enderby Land). Doklady Earth Sciences, 2011, 438, 770-774.	0.7	14
31	Trace elements and Hf isotope composition as indicators of zircon genesis due to the evolution of alkaline-carbonatite magmatic system (<i>llmeny–Vishnevogorsky complex</i> , <i>Urals</i> ,) Tj ETQq1 1 0.	78431 .4 rgE	BT / O verlock
32	Isochron Re-Os age of gold from mayskoe gold-quartz vein deposit (Northern Karelia, Baltic Shield). Doklady Earth Sciences, 2013, 448, 54-57.	0.7	12
33	Geochemical aspects of the assimilation of host rocks by basaltic magmas during the formation of Noril'sk Cu-Ni ores. Petrology, 2014, 22, 128-150.	0.9	11
34	Ninetyeast ridge: Magmatism and geodynamics. Geochemistry International, 2016, 54, 237-256.	0.7	11
35	U–Pb SHRIMP-II ages of titanite and timing constraints on apatite–nepheline mineralization in the Khibiny and Lovozero alkaline massifs (Kola Peninsula). Russian Geology and Geophysics, 2018, 59, 962-974.	0.7	10
36	Petro-geochemistry, Sr Nd isotopes and 40Ar/39Ar ages of fractionated alkaline lamprophyres from the Mount Girnar igneous complex (NW India): Insights into the timing of magmatism and the lithospheric mantle beneath the Deccan Large Igneous Province. Lithos, 2020, 374-375, 105712.	1.4	10

#	Article	IF	CITATIONS
37	Geochemistry and Geochronology of Southern Norilsk Intrusions, SW Siberian Traps. Minerals (Basel,) Tj ETQq1 I	. 0,784314 2 . 0	l rgBT /Overl
38	Petrology and Nd–Sr isotopic composition of alkaline lamprophyres from the Early to Late Cretaceous Mundwara Alkaline Complex, NW India: evidence of crystal fractionation, accumulation and corrosion in a complex magma chamber plumbing system. Geological Society Special Publication, 2022, 513, 413-442.	1.3	10
39	Direct Isotope Dating of W(â^Y) Mineralization at Kyzyltau (Mongolian Altai): Preliminary Results. International Geology Review, 2000, 42, 470-480.	2.1	9
40	Geochemistry of Neogene magmatism at Spitsbergen Island. Geochemistry International, 2009, 47, 966-978.	0.7	9
41	Age and substance sources of the Ilmeno-Vishnevogorsky Alkaline Complex (South Urals): Rb-Sr, Sm-Nd, U-Pb, and Lu-Hf isotope data. Doklady Earth Sciences, 2012, 446, 1071-1076.	0.7	9
42	The Age of Rift-Related Basalts in East Antarctica. Doklady Earth Sciences, 2018, 478, 11-14.	0.7	8
43	Evolution of the Kerguelen plume and its impact upon the continental and oceanic magmatism of East Antarctica. Geochemistry International, 2017, 55, 775-791.	0.7	7
44	lsotopic systematics of He, Ar, S, Cu, Ni, Re, Os, Pb, U, Sm, Nd, Rb, Sr, Lu, and Hf in the rocks and ores of the Norilsk deposits. Geochemistry International, 2018, 56, 46-64.	0.7	7
45	Early Cretaceous Alkaline Magmatism of East Antarctica: Peculiarities, Conditions of Formation, and Relationship with the Kerguelen Plume. Geochemistry International, 2018, 56, 1051-1070.	0.7	7
46	Rb-Sr age of metasomatism and ore formation in the low-temperature shear zones of the Fenno-Karelian CRATON, Baltic Shield. Petrology, 2014, 22, 184-204.	0.9	6
47	Nd–Sr–Os systems of eclogites in the lithospheric mantle of the Kasai Craton (Angola). Russian Geology and Geophysics, 2017, 58, 1305-1316.	0.7	6
48	Petrographical and Mineralogical Characteristics of Magmatic Rocks in the Northwestern Siberian Traps Province, Kulyumber River Valley. Part I: Rocks of the Khalil and Kaya Sites. Minerals (Basel,) Tj ETQq0 0 0 rg	B₽ /O verlo	ocks 10 Tf 50
49	Petrographical and Geochemical Characteristics of Magmatic Rocks in the Northwestern Siberian Traps Province, Kulyumber River Valley. Part II: Rocks of the Kulyumber Site. Minerals (Basel,) Tj ETQq1 1 0.78431	4 ஜ®T /O∖	verdock 10 Tf
50	Tourmalinization at the Darasun goldfield, Eastern Transbaikalia: Compositional, fluid inclusion and isotopic constraints. Geoscience Frontiers, 2012, 3, 59-71.	8.4	5
51	Geochemical evolution of Indian Ocean basaltic magmatism. Geochemistry International, 2013, 51, 599-622.	0.7	5
52	Conditions of formations of slightly enriched tholeiites in the northern Knipovich Ridge. Geochemistry International, 2010, 48, 321-337.	0.7	4
53	Sr-Nd isotopic disequilibrium of clinopyroxenes from the ultrapotassic effusive rocks of the East African rift system: Mixing of melts and source heterogeneity. Geochemistry International, 2013, 51, 505-512.	0.7	4
54	The Late Cretaceous diamondiferous pyroclastic kimberlites from the Fort à la Corne (FALC) field, Saskatchewan craton, Canada: Petrology, geochemistry and genesis. Gondwana Research, 2017, 44, 236-257.	6.0	4

#	Article	IF	CITATIONS
55	Composition and geodynamic setting of Late Paleozoic magmatism of Chukotka. Geochemistry International, 2017, 55, 683-710.	0.7	4
56	Genesis of a Magnetite Layer in the Gabbro-10 Intrusion, Monchegorsk Complex, Kola Region: U–Pb SHRIMP-II Dating of Metadiorites. Geology of Ore Deposits, 2018, 60, 486-496.	0.7	4
57	Geochemical Characteristics of Jurassic Plume Magmatism in Ahlmannryggen Massif (Queen Maud) Tj ETQq1 1 0	.784314 r 0.7	gBT /Overloc
58	Ore and Geochemical Specialization and Substance Sources of the Ural and Timan Carbonatite Complexes (Russia): Insights from Trace Element, Rb–Sr, and Sm–Nd Isotope Data. Minerals (Basel,) Tj ETQq	0 @.@ rgBT	/Qiverlock 10
59	Geochemical and Petrological Characteristics of Mesozoic Dykes from Schirmacher Oasis (East) Tj ETQq1 1 0.784	4314 rgBT	/Qverlock 10
60	The Age of Nb Rare-Metal Mineralization of the Ilmeny–Vishnevogorsky Alkaline Complex (South) Tj ETQq0 0 0	rgBT /Ove	erlgck 10 Tf 5
61	Composition, Age, and Origin of Cretaceous Granitic Magmatism on the Eastern Chukchi Peninsula. Geotectonics, 2018, 52, 312-330.	0.9	3
62	Magmatic evolution of the Cerro Maricunga gold porphyry-epithermal system, Maricunga belt, N-Chile. Journal of South American Earth Sciences, 2019, 92, 374-399.	1.4	3
63	Origin of the Middle Paleoproterozoic Tiksheozero Ultramafic-Alkaline-Carbonatite Complex, NE Fennoscandian Shield: Evidence from Geochemical and Isotope Sr-Nd-Hf-Pb-Os Data. Minerals (Basel,) Tj ETQq1 1	02784314	1 rg BT ∕Overla
64	Sm-Nd and Rb-Sr age of gabbroic rocks in the Dzhabyk Batholith, the Southern Urals. Doklady Earth Sciences, 2008, 419, 275-280.	0.7	2
65	Magmatism of the junction region of the Knipovich and Mohns Ridges (Polar Atlantic): Results of cruise 25 of the R/V "Akademik Nikolai Strakhov― Geochemistry International, 2011, 49, 31-45.	0.7	2
66	Mantle sources of quaternary volcanism on Zhokhov Island (De Long Islands, East Arctic): Isotope-geochemical features of the basalts and spinel Iherzolite xenoliths. Doklady Earth Sciences, 2015, 460, 123-129.	0.7	2
67	Hf isotopes and trace elements as indicators of zircon genesis in the evolution of the alkaline-carbonatite magmatic system (Il'meno-Vishnevogorskii Complex, Urals, Russia). Doklady Earth Sciences, 2015, 461, 384-389.	0.7	2
68	Regional and local magmatic anomalies and tectonics of rift zones between the Antarctic and South American plates. Geochemistry International, 2016, 54, 494-508.	0.7	2
69	Ophiolitic Complex of the Matachingai River on Eastern Chukotka: Fragment of Lithosphere in Mesozoic Back-Arc Basin. Geotectonics, 2018, 52, 447-467.	0.9	2
70	Sources of Ore Substance of Carbonatite Complexes of the Ural Fold Belt: Rb–Sr and Sm–Nd Isotope Data. Doklady Earth Sciences, 2018, 480, 773-777.	0.7	2
71	The Age and Evolution of the Lithospheric Mantle in the East Antarctic Craton: Osmium Isotope Composition and the Distribution of Platinum Group Elements in Spinel Lherzolite Nodules. Doklady Earth Sciences, 2019, 485, 444-449.	0.7	2
72	Mineralogy and petrology of lamprophyre and dolerite dykes from the end-Cretaceous (~ 66ÂMa) Phenaimata alkaline igneous complex, north-western India: evidence for open magma chamber fractionation, mafic recharge, and disaggregation of crystal mush zone in a large igneous province. Mineralogy and Petrology, 2023, 117, 415-445.	1.1	2

BORIS BELYATSKY

#	Article	IF	CITATIONS
73	Morozkinskoye gold deposit (southern Yakutia): age and ore sources. Journal of Mining Institute, 0, 252, 801-813.	0.8	2
74	Geochemical features and age of baddeleyite from carbonatites of the Proterozoic Tiksheozero alkaline–ultramafic pluton, North Karelia. Doklady Earth Sciences, 2015, 464, 1039-1043.	0.7	1
75	Vendian and Permian–Triassic Plagiogranite Magmatism of the Ust-Belaya Mountains, West Koryak Fold System, Northeastern Russia. Geotectonics, 2019, 53, 84-109.	0.9	1
76	Sulphur Isotopes. Springer Geology, 2019, , 49-72.	0.3	1
77	Long-Lasting Influence of the Discovery Plume on Tholeiitic Magmatism in the South Atlantic: Data on Basalts Recovered by Hole 513a, DSDP Leg 71. Geochemistry International, 2019, 57, 113-133.	0.7	1
78	10.1007/s11476-008-1001-2., 2010, 46, 1.		1
79	Paleoarchean age, Sm-Nd systematic, and REE distribution in zircon from granitoid of the Southern Prince Charles Mountains (Eastern Antarctica). Doklady Earth Sciences, 2010, 433, 1114-1118.	0.7	0
80	Chronological and genetic relationships between intrusive rocks of the Berdyaush pluton, South Urals, in light of new U-Pb and Sm-Nd isotopic data. Geology of Ore Deposits, 2011, 53, 723-734.	0.7	0
81	First findings of Paleo- and Mesoarchean zircons in the rocks from the Central Arctic province of oceanic rises as an evidence of the ancient continental crust. Doklady Earth Sciences, 2015, 463, 684-689.	0.7	0
82	Uâ€Pb SHRIMPâ€II Baddeleyite and Zircon Dating of the Early Proterozoic Monchegorsk Layered Mafiteâ€Ultramafite Complex (Kola Peninsula): Evidence of Synchronous Magmatism. Acta Geologica Sinica, 2016, 90, 79-80.	1.4	0
83	Genesis and Distribution of Ultraâ€elkaline Magmatism within the East Antarctic Associated with the Kerguelen Plume Activity. Acta Geologica Sinica, 2016, 90, 198-199.	1.4	0
84	The Sr–Nd–Pb–Hf Isotopic Composition of Late Paleozoic Granitoids in Central Chukotka. Doklady Earth Sciences, 2019, 485, 231-234.	0.7	0
85	Strontium and Neodymium Isotopes. Springer Geology, 2019, , 89-132.	0.3	0