Yun-Lin Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/432178/publications.pdf

Version: 2024-02-01

		172386	168321
54	4,083	29	53
papers	citations	h-index	g-index
59	59	59	2670
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	1,2-Dicarbofunctionalization of Trifluoromethyl Alkenes with Pyridinium Salts via a Cycloaddition/Visible-Light-Enabled Fragmentation Cascade. Organic Letters, 2022, 24, 702-707.	2.4	14
2	Diversity-Oriented Synthesis of Fluoromethylated Arenes via Palladium-Catalyzed C–H Fluoromethylation of Aryl Iodides. Organic Letters, 2022, 24, 1341-1345.	2.4	11
3	BiCl ₃ â€Mediated Tandem Cyclization of Tryptamineâ€Derived Ynamide: Concise Synthesis of Pentacyclic Spiroindolines and Tricyclic Indole Derivatives. Advanced Synthesis and Catalysis, 2022, 364, 890-896.	2.1	8
4	Catalytic Enantioselective Isocyanideâ€Based Reactions: Beyond Passerini and Ugi Multicomponent Reactions. Chemistry - A European Journal, 2021, 27, 6598-6619.	1.7	50
5	Frontispiece: Catalytic Enantioselective Isocyanideâ€Based Reactions: Beyond Passerini and Ugi Multicomponent Reactions. Chemistry - A European Journal, 2021, 27, .	1.7	О
6	Stereoselective Access to Spirooxindoles and Bisoxindoles Through Organocatalyzed Asymmetric Divergent Transformations of Isatinâ€derived MBH Carbonates. Chemistry - an Asian Journal, 2021, 16, 3086-3090.	1.7	5
7	Reaction condition-dependent divergent synthesis of spirooxindoles and bisoxindoles. Organic Chemistry Frontiers, 2021, 8, 3820-3828.	2.3	16
8	Hydroxyl group-directed, tartaric acid-catalyzed synthesis of <i>meta</i> -functionalized aryl ethers and phenols through domino conjugate addition/aromatization of <i>para</i> -quinols. Organic Chemistry Frontiers, 2021, 8, 6851-6856.	2.3	5
9	Tandem Crossâ€Coupling/Spirocyclization/Mannichâ€Type Reactions of 3â€(2â€Isocyanoethyl)indoles with Diazo Compounds toward Polycyclic Spiroindolines. Angewandte Chemie, 2020, 132, 624-631.	1.6	13
10	Frontispiece: Tandem Crossâ€Coupling/Spirocyclization/Mannichâ€Type Reactions of 3â€(2â€Isocyanoethyl)indoles with Diazo Compounds toward Polycyclic Spiroindolines. Angewandte Chemie - International Edition, 2020, 59, .	7.2	0
11	Catalyst-free formal [4+1]/[4+2] cyclization cascade sequence of isocyanides with two molecules of acylketene formed in situ from thermal-induced Wolff rearrangement of 2-diazo-1,3-diketones. Science Bulletin, 2020, 65, 670-677.	4.3	22
12	Tandem Crossâ€Coupling/Spirocyclization/Mannichâ€Type Reactions of 3â€(2â€Isocyanoethyl)indoles with Diazo Compounds toward Polycyclic Spiroindolines. Angewandte Chemie - International Edition, 2020, 59, 614-621.	7.2	78
13	One-Pot Methylenation–Cyclization Employing Two Molecules of CO2 with Arylamines and Enaminones. Journal of Organic Chemistry, 2020, 85, 912-923.	1.7	27
14	Hydrosilane-Assisted Synthesis of Urea Derivatives from CO ₂ and Amines. Journal of Organic Chemistry, 2020, 85, 13347-13353.	1.7	19
15	Tandem Annulations of Propargylic Alcohols to Indole Derivatives. Advanced Synthesis and Catalysis, 2020, 362, 5170-5195.	2.1	27
16	Reductive CO ₂ Fixation via the Selective Formation of C–C Bonds: Bridging Enaminones and Synthesis of 1,4-Dihydropyridines. Organic Letters, 2020, 22, 8326-8331.	2.4	34
17	Catalytic enantioselective synthesis using carbon dioxide as a C1 synthon. Organic and Biomolecular Chemistry, 2020, 18, 8597-8619.	1.5	34
18	Oneâ€Pot Tandem Protocol for the Synthesis of 1,3â€Bis(βâ€aminoacrylate)â€Substituted 2â€Mercaptoimidazo Scaffolds. Advanced Synthesis and Catalysis, 2020, 362, 3635-3643.	ole _{2.1}	23

#	Article	IF	Citations
19	Exploiting Remarkable Reactivities of Ynamides: Opportunities in Designing Catalytic Enantioselective Reactions. ACS Catalysis, 2020, 10, 13978-13992.	5.5	105
20	Catalytic enantioselective construction of vicinal quaternary carbon stereocenters. Chemical Science, 2020, 11, 9341-9365.	3.7	96
21	Recent Advances in Catalytic Enantioselective Synthesis of Fluorinated α―and βâ€Amino Acids. Advanced Synthesis and Catalysis, 2020, 362, 4763-4793.	2.1	35
22	Synthesis of fused-tetrahydropyrimidines: one-pot methylenation–cyclization utilizing two molecules of CO ₂ . Organic and Biomolecular Chemistry, 2020, 18, 6881-6888.	1.5	13
23	Photoâ€Mediated Decarboxylative Cross Coupling of Quinoxalinâ€2(1 H)â€ones with Aliphatic Carboxylic Acids in Aqueous Solution: Synthesis of Alkylated Quinoxalinâ€2(1 H)â€ones and Preliminary Antifungal Evaluation Against Magnaporthe Grisea. Asian Journal of Organic Chemistry, 2020, 9, 782-787.	1.3	17
24	3-(2-Isocyanoethyl)indole: A Versatile Reagent for Polycyclic Spiroindoline Synthesis. Synlett, 2020, 31, 1033-1039.	1.0	14
25	Fluoroalkylation of Allylic Alcohols with Concomitant (Hetero)aryl Migration: Access to Fluoroalkylated Ketones and Evaluation of Antifungal Action against <i>Magnaporthe grisea</i> European Journal of Organic Chemistry, 2020, 2020, 5192-5200.	1.2	22
26	Frontispiz: Tandem Crossâ€Coupling/Spirocyclization/Mannichâ€Type Reactions of 3â€(2â€isocyanoethyl)indoles with Diazo Compounds toward Polycyclic Spiroindolines. Angewandte Chemie, 2020, 132, .	1.6	0
27	Transition-Metal-Free, Intermolecular Azidoheteroarylation of Alkenes: Efficient Access to β-Azidoalkylated Quinoxalinones and Preliminary Antifungal Evaluation Against Magnaporthe grisea. Synthesis, 2020, 52, 2395-2409.	1.2	15
28	Transition-metal-free, three-component trifluoromethylative heteroarylation of unactivated alkenes: Efficient access to \hat{l}^2 -trifluoromethylated quinoxalinones and preliminary antifungal evaluation against Magnaporthe grisea. Tetrahedron, 2020, 76, 131199.	1.0	28
29	Diastereoselective Synthesis of 1,3-Diyne-Tethered Trifluoromethylcyclopropanes through a Sulfur Ylide Mediated Cyclopropanation/DBU-Mediated Epimerization Sequence. Journal of Organic Chemistry, 2020, 85, 6252-6260.	1.7	14
30	Phosphine-catalyzed [3 + 2] cycloadditions of trifluoromethyl enynes/enediynes with allenoates: access to cyclopentenes containing a CF ₃ -substituted quaternary carbon center. Organic Chemistry Frontiers, 2020, 7, 3399-3405.	2.3	18
31	Diastereoselective synthesis of cyclopropanes bearing trifluoromethyl-substituted all-carbon quaternary centers from 2-trifluoromethyl-1,3-enynes beyond fluorine elimination. Chemical Communications, 2019, 55, 3879-3882.	2.2	36
32	Recent Advances in Catalytic Asymmetric Synthesis of Tertiary Alcohols <i>via</i> Nucleophilic Addition to Ketones. Advanced Synthesis and Catalysis, 2019, 361, 876-918.	2.1	140
33	Organocatalytic Asymmetric Cyclization Reaction of 2â€Alkynylâ€3,3â€Difluoroâ€3 <i>H</i> â€Indoles and 2â€Mercaptoimidazoles: Access to <i>gem</i> â€Difluorinated C2â€Spiro Indolines. Advanced Synthesis and Catalysis, 2019, 361, 1408-1413.	2.1	27
34	Internally Reuse Waste: Catalytic Asymmetric Oneâ€Pot Strecker Reaction of Fluoroalkyl Ketones, Anilines and TMSCN by Sequential Catalysis. Chinese Journal of Chemistry, 2018, 36, 321-328.	2.6	36
35	Back Cover: Internally Reuse Waste: Catalytic Asymmetric One-Pot Strecker Reaction of Fluoroalkyl Ketones, Anilines and TMSCN by Sequential Catalysis (Chin. J. Chem. 4/2018). Chinese Journal of Chemistry, 2018, 36, 372-372.	2.6	0
36	Organocatalytic Synthesis of <i>gem</i> â€Difluorinated C2â€Spiro Indolines and Pyrimido[1,2â€ <i>a</i>]benzimidazoles from 2â€Alkynylâ€3,3â€Difluoroâ€3 <i>H</i> àâ€Indoles. Advanced Syntland Catalysis, 2018, 360, 3643-3648.	nes is .1	32

#	Article	IF	CITATIONS
37	A Zn(OTf) < sub > 2 < /sub > catalyzed Ugi-type reaction of 3-(2-isocyanoethyl) indoles with indole-derived ketimines: rapid access to hexacyclic spiroindolines. Organic Chemistry Frontiers, 2018, 5, 2303-2307.	2.3	46
38	A Journey in the Catalytic Synthesis of 3-Substituted 3-AminoÂoxindoles. Synlett, 2015, 26, 2491-2504.	1.0	61
39	Catalytic Asymmetric Strecker Reaction: Bifunctional Chiral Tertiary Amine/Hydrogen-Bond Donor Catalysis Joins the Field. Synthesis, 2015, 47, 1210-1226.	1.2	34
40	An Organocatalytic Addition of Nitromethane to Activated Ketimines. Asian Journal of Organic Chemistry, 2014, 3, 429-432.	1.3	43
41	Highly Efficient "On Water―Catalystâ€Free Nucleophilic Addition Reactions Using Difluoroenoxysilanes: Dramatic Fluorine Effects. Angewandte Chemie - International Edition, 2014, 53, 9512-9516.	7.2	156
42	Highly stereoselective construction of adjacent tetrasubstituted carbon stereogenic centres via an organocatalytic Mukaiyama-aldol reaction of monofluorinated silyl enol ethers to isatins. Organic Chemistry Frontiers, 2014, 1, 742.	2.3	69
43	Oneâ€Pot Tandem Approach to Spirocyclic Oxindoles Featuring Adjacent Spiroâ€Stereocenters. Angewandte Chemie - International Edition, 2013, 52, 13735-13739.	7.2	197
44	Organocatalytic asymmetric cyanation of isatin derived N-Boc ketoimines. Chemical Communications, 2013, 49, 4421-4423.	2.2	142
45	Catalytic Asymmetric Construction of Stereogenic Carbon Centers that Feature a <i>yem</i> â€Difluoroalkyl Group. Asian Journal of Organic Chemistry, 2013, 2, 194-206.	1.3	94
46	The First Catalytic Asymmetric Moritaâ€Baylisâ€Hillman Reaction of Acrolein with Aromatic Aldehydes. Chinese Journal of Chemistry, 2012, 30, 2631-2635.	2.6	6
47	Organocatalytic asymmetric synthesis of 3-difluoroalkyl 3-hydroxyoxindoles. Chemical Communications, 2012, 48, 1919.	2.2	127
48	Ethylene Glycol: A Powerful Catalystâ€Free Medium for CC Bondâ€Forming Reactions. Chemistry - an Asian Journal, 2012, 7, 1759-1763.	1.7	43
49	Organocatalytic Asymmetric Strecker Reaction of Di- and Trifluoromethyl Ketoimines. Remarkable Fluorine Effect. Organic Letters, 2011, 13, 3826-3829.	2.4	169
50	Cinchona alkaloid-based phosphoramide catalyzed highly enantioselective Michael addition of unprotected 3-substituted oxindoles to nitroolefins. Chemical Science, 2011, 2, 2035.	3.7	161
51	Organocatalytic Asymmetric αâ€Amination of Unprotected 3â€Aryl and 3â€Aliphatic Substituted Oxindoles using Diâ€∢i>tertaê€butyl Azodicarboxylate. Advanced Synthesis and Catalysis, 2011, 353, 2945-2952.	2.1	71
52	Catalytic Asymmetric Synthesis of Oxindoles Bearing a Tetrasubstituted Stereocenter at the Câ€3 Position. Advanced Synthesis and Catalysis, 2010, 352, 1381-1407.	2.1	1,161
53	A facile method for the synthesis of oxindole based quaternary \hat{l}_{\pm} -aminonitriles via the Strecker reaction. Organic and Biomolecular Chemistry, 2010, 8, 3847.	1.5	117
54	Organocatalytic Asymmetric Synthesis of Substituted 3-Hydroxy-2-oxindoles via Moritaâ^'Baylisâ^'Hillman Reaction. Journal of the American Chemical Society, 2010, 132, 15176-15178.	6.6	224