
Nisar Ali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4321632/publications.pdf Version: 2024-02-01

NISAD ALL

#	Article	IF	CITATIONS
1	Optoelectronic properties of thermally coated tin selenide thin films for photovoltaics. International Journal of Energy Research, 2022, 46, 3725-3731.	4.5	0
2	The use of copper zinc tin sulfide compound thin film as an absorber layer in solar cell. , 2021, , .		0
3	A Study on Optoelectronic Properties of Copper Zinc Tin Sulfur Selenide: A Promising Thinâ€Film Material for Next Generation Solar Technology. Crystal Research and Technology, 2021, 56, 2000159.	1.3	2
4	A review on perovskite materials with solar cell prospective. International Journal of Energy Research, 2021, 45, 19729-19745.	4.5	28
5	Combinatorial synthesis of tin antimony sulfide thin films for solar cell application. International Journal of Energy Research, 2021, 45, 21527-21533.	4.5	4
6	p-type Cu3BiS3 thin films for solar cell absorber layer via one stage thermal evaporation. Applied Surface Science, 2020, 505, 144597.	6.1	28
7	Advances in nanostructured homojunction solar cells and photovoltaic materials. Materials Science in Semiconductor Processing, 2020, 107, 104810.	4.0	29
8	Preparation and characterization of layer-diffusion processed InBi2Se4 thin films for photovoltaics application. Optik, 2020, 220, 164935.	2.9	6
9	Fabrication and characterization of 150Ânm tin antimony sulfide thin films, a promising window layer material for homojunction solar cells. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	12
10	Synthesis and characterization of thermally evaporated copper bismuth sulphide thin films. Surface and Coatings Technology, 2017, 320, 404-408.	4.8	21
11	Synthesis and characterization of copper antimony tin sulphide thin films for solar cell applications. Applied Surface Science, 2016, 390, 393-398.	6.1	8
12	Advances in nanostructured thin film materials for solar cell applications. Renewable and Sustainable Energy Reviews, 2016, 59, 726-737.	16.4	133
13	Antimony sulphide, an absorber layer for solar cell application. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	20
14	First principles study of the adsorption and dissociation mechanisms of H ₂ S on a TiO ₂ anatase (001) surface. RSC Advances, 2016, 6, 7941-7949.	3.6	25
15	Computational modeling and characterization of X–Bi (X = B, Al, Ga, In) compounds: Prospective optoelectronic materials for infrared/near infra applications. Computational Materials Science, 2016, 114, 40-46.	3.0	20
16	Post annealing effects on structural, optical and electrical properties of CuSbS2 thin films fabricated by combinatorial thermal evaporation technique. Superlattices and Microstructures, 2016, 89, 136-144.	3.1	30
17	A density functional study of structural, electronic and optical properties of titanium dioxide: Characterization of rutile, anatase and brookite polymorphs. Materials Science in Semiconductor Processing, 2015, 31, 405-414.	4.0	64
18	A novel approach for the synthesis of tin antimony sulphide thin films for photovoltaic application. Solar Energy, 2015, 113, 25-33.	6.1	33

NISAR ALI

#	Article	IF	CITATIONS
19	Advances in CZTS thin films and nanostructured. Opto-electronics Review, 2015, 23, .	2.4	3
20	200°C annealed combinatorially deposited chalcogenide based metallic thin films for photovoltaics. Measurement: Journal of the International Measurement Confederation, 2015, 63, 81-86.	5.0	7
21	Annealing Effects on the Structural and Optical Properties of Thermally Deposited Tin Antimony Sulfide Thin Films. Brazilian Journal of Physics, 2014, 44, 733-738.	1.4	7
22	Superior electrochemical performance of mesoporous Fe3O4/CNT nanocomposites as anode material for lithium ion batteries. Journal of Alloys and Compounds, 2014, 611, 260-266.	5.5	34
23	Study of deep inelastic collision in the heavy ion reaction of 14.0 (MeV/u) <sup align="right">132Xe + ²³⁸U. International Journal of Nuclear Energy Science and Technology, 2014, 8, 89.</sup 	0.0	0
24	Structural and optoelectronic properties of antimony tin sulphide thin films deposited by thermal evaporation techniques. Optik, 2013, 124, 4746-4749.	2.9	25
25	Zr-pillared montmorillonite supported cobalt nanoparticles for Fischer–Tropsch synthesis. Progress in Natural Science: Materials International, 2013, 23, 374-381.	4.4	17
26	One-pot synthesis of a composite of monodispersed CuO nanospheres on carbon nanotubes as anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2013, 574, 221-226.	5.5	40
27	Facile synthesis of carbon nanotubes supported NiO nanocomposite and its high performance as lithium-ion battery anode. Materials Letters, 2013, 107, 158-161.	2.6	27
28	Structure and electrochemical performance of ZnO/CNT composite as anode material for lithium-ion batteries. Journal of Materials Science, 2013, 48, 5429-5436.	3.7	89
29	Modification of carbon nanotubes by CuO-doped NiO nanocomposite for use as an anode material for lithium-ion batteries. Journal of Solid State Chemistry, 2013, 202, 43-50.	2.9	34
30	Effect of air annealing on the band gap and optical properties of SnSb2S4 thin films for solar cell application. Materials Letters, 2013, 100, 148-151.	2.6	31
31	Synthesis of carbon nanotubes anchored with mesoporous Co3O4 nanoparticles as anode material for lithium-ion batteries. Electrochimica Acta, 2013, 105, 481-488.	5.2	89
32	Optoelectronic Properties of Cadmium Sulfide Thin Films Deposited by Thermal Evaporation Technique. Key Engineering Materials, 0, 510-511, 177-185.	0.4	2
33	Combinatorial Study of SnSbS Thin Films by X-Ray Diffraction and Photoconductivity. Journal of Global Energy Issues, 0, , .	0.0	0